
1

A method and arrangement for providing security through network
address translations using tunneling and compensations

The invention relates in general to the field of secure communications
between computers in a packet-switched data transmission networks. More 5
particularly the invention relates to the field of setting up and maintaining
secure communication connections through a Network Address Translation or
protocol conversion.

The Internet Engineering Task Force (IETF) has standardized the IPSEC
(Internet Protocol Security) protocol suite; the standards are well known from 10
the Request For Comments or RFC documents number RFC2401, RFC2402,
RFC2406, RFC2407, RFC2408 and RFC2409 mentioned in the appended list
of references. The IPSEC protocols provide security for the IP or Internet
Protocol, which itself has been specified in the RFC document number
RFC791. IPSEC performs authentication and encryption on packet level by 15
generating a new IP header, adding an Authentication Header (AH) or
Encapsulating Security Payload (ESP) header in front of the packet. The
original packet is cryptographically authenticated and optionally encrypted.
The method used to authenticate and possibly encrypt a packet is identified by
a security parameter index (SPI) value stored in the AH and ESP headers. The 20
RFC document number RFC2401 specifies a transport mode and a tunnelling
mode for packets; the present invention is applicable regardless of which of
these modes is used.

In recent years, more and more vendors and Internet service providers have
started performing network address translation (NAT). References to NAT 25
are found at least in the RFC document number RFC1631 as well as the
documents which are identified in the appended list of references as
Srisuresh98Terminology, SrisureshEgevang98, Srisuresh98Security,
HoldregeSrisuresh99, TYS99, Rekhter99, LoBorella99 and BorellaLo99.
There are two main forms of address translation, illustrated schematically in 30
Figs. 1a and 1b: host NAT 101 and port NAT 151. Host NAT 101 only
translates the IP addresses in an incoming packet 102 so that an outgoing
packet 103 has a different IP address. Port NAT 151 also touches the TCP
and UDP port numbers (Traffic Control Protocol; User Datagram Protocol) in
an incoming packet 152, multiplexing several IP addresses to a single IP 35

2

address in an outgoing packet 153 and correpondingly demultiplexing a single
IP address into several IP addresses for packets travelling in the opposite
direction (not shown). Port NATs are especially common in the home and
small office environment. The physical separation of input and output
connections for the NAT devices is only shown in Figs. 1a and 1b for 5
graphical clarity; in practice there are many possible ways for physically
connecting a NAT.

Address translation is most frequently performed at the edge of a local
network (i.e., translation between multiple local private addresses on on hand
and fewer globally routable public addresses on the other). Most often, port 10
NAT is used and there is only one globally routable address. A local network
154 has been schematically illustrated in Fig. 1b. Such arrangements are
becoming extremely commonplace in the home and small office markets.
Some Internet service providers have also started giving private addresses to
their customers, and perform address translation in their core networks for 15
such addresses. In general, network address translation has been widely
discussed in depth e.g. in the NAT working group within the Internet
Engineering Task Force. The operating principles of a NAT device are well
known, and there are many implementations available on the market from
multiple vendors, including several implementations in freely available source 20
code. The typical operation of a NAT may be described so that it maps IP
address and port combinations to different IP address and port combinations.
The mapping will remain constant for the duration of a network connection,
but may change (slowly) with time. In practice, the NAT functionality is often
integrated into a firewall or a router. 25

Fig. 1c illustrates an exemplary practical network communication situation
where a transmitting node 181 is located in a first local area network (also
known as the first private network) 182, which has a port NAT 183 to connect
is to a wide-area general packet-switched network 184 like the Internet. The
latter consists of a very large number of nodes interconnected in an arbitrary 30
way. A receiving node 185 is located in a second local area network 186
which is again coupled to the wide-area network through a NAT 187. The
denominations ”transmitting node” and ”receiving node” are somewhat
misleading, since the communication required to set up network security
services is bidirectional. The transmitting node is the one that initiates the 35

3

communication. Also the terms ”Initiator” and ”Responder” are used for the
transmitting node and the receiving node respectively.

The purpose of Fig. 1c is to emphasize the fact that the communicating nodes
are aware of neither the number or nature of the intermediate devices through
which they communicate nor the nature of transformations that take place. In 5
addition to NATs, there are other types of devices on the Internet that may
legally modify packets as they are transmitted. A typical example is a protocol
converter, whose main job is to convert the packet to a different protocol
without disturbing normal operation. Using them leads to problems very
similar to the NAT case. A fairly simple but important example is converting 10
between IPv4 and IPv6, which are different versions of the Internet Protocol.
Such converters will be extremely important and commonplace in the near
future. A packet may undergo several conversions of this type during its
travel, and it is possible that the endpoints of the communication actually use
a different protocol. Like NAT, protocol conversion is often performed in 15
routers and firewalls.

It is well known in the IPSEC community that the IPSEC protocol does not
work well across network address translations. The problem has been
discussed at least in the references given as HoldregeSrisuresh99 and
Rekhter99. 20

In the Finnish patent application number 974665 and the corresponding PCT
application number FI98/01032, which are incorporated herein by reference,
we have presented a certain method for performing IPSEC address
translations and a method for packet authentication that is insensitive to
address transformations and protocol conversions en route of the packet. 25
Additionally in said applications we have presented a transmitting network
device and a receiving network device that are able to take advantage of the
aforementioned method. However, some problems related to the provision of
network security services over network address translation remain unsolved in
said previous patent applications. 30

It is an object of the present invention to present a method and the
corresponding devices for providing network network security services over
network address translation in a reliable and advantageous way.

4

According to a first aspect of the invention there is therefore provided a
method for securely communicating packets between a first computer device
and a second computer device through a packet-switched data transmission
network comprising intermediate computer devices, where at least one of said
computer devices performs a network address translation and/or a protocol 5
conversion, the method comprising the steps of

- determining what network address translations, if any, occur on packets
transmitted between the first computer device and the second computer
device,
- taking packets conforming to a first protocol and encapsulating them into 10
packets conforming to a second protocol, which second protocol is capable of
traversing network address translations,
- transmitting said packets conforming to said second protocol from the first
computer device to the second computer device and
- decapsulating said transmitted packets conforming to said second protocol 15
into packets conforming to said first protocol.

According to a second aspect of the invention there is provided a method for
conditionally setting up a secure communication connection between a first
computer device and a second computer device through a packet-switched
data transmission network comprising intermediate computer devices, where 20
at least one of said computer devices performs a network address translation
and/or a protocol conversion, the method comprising the steps of

- finding out, whether or not the second computer device supports a
communication method where: it is determined what network address
translations, if any, occur on packets transmitted between the first computer 25
device and the second computer device; packets are taken that conform to a
first protocol and encapsulated into packets that conform to a second
protocol, which second protocol is capable of traversing network address
translations; said packets conforming to said second protocol are transmitted
from the first computer device to the second computer device; and said 30
transmitted packets conforming to said second protocol are decapsulated into
packets conforming to said first protocol,
- as a response to a finding indicating that the second computer device
supports said communication method, setting up a secure communication
connection between the first computer device and the second computer device 35

5

in which communication connection said communication method is employed
and
- as a response to a finding indicating that the second computer device does
not support said communication method, disabling the use of said
communication method between the first and the second computer devices. 5

According to a third aspect of the invention there is provided a method for
tunnelling packets between a first computer device and a second computer
device through a packet-switched data transmission network comprising
intermediate computer devices, where at least one of said computer devices
performs a network address translation and/or a protocol conversion, the 10
method comprising the steps of

- taking packets conforming to a first protocol and encapsulating them at the
first computer device into packets conforming to a second protocol, which
second protocol is capable of traversing network address translations,
- transmitting said packets conforming to said second protocol from the first 15
computer device to the second computer device,
- decapsulating said transmitted packets conforming to said second protocol
into packets conforming to said first protocol at the second computer device,
- generating response packets conforming to said first protocol and
encapsulating them at the second computer device into response packets 20
conforming to said second protocol,
- transmitting said response packets conforming to said second protocol from
the second computer device to the first computer device,
- decapsulating said transmitted response packets conforming to said second
protocol into packets conforming to said first protocol at the first second 25
computer device,
- using the response packets at the first computer device to obtain information
about the address translations occurred on packets transmitted between the
first computer device and the second computer device and
- using said obtained information to modify the operation of the tunnelling of 30
packets between the first computer device and the second computer device.

According to a fourth aspect of the invention there is provided a method for
tunnelling packets between a first computer device and a second computer
device through a packet-switched data transmission network comprising
intermediate computer devices, in which data transmission network there 35
exists a security protocol comprising a key management connection that

6

employs a specific packet format for key management packets, the method
comprising the steps of

- encapsulating data packets that are not key management packets into said
specific packet format for key management packets,
- transmitting said data packets encapsulated into the specific packet format 5
from the first computer device to the second computer device,
- discriminating at the second computer device the data packets encapsulated
into the specific packet format from actual key management packets and
- decapsulating the data packets encapsulated into the specific packet format.

According to a fifth aspect of the invention there is provided a method for 10
securely communicating packets between a first computer device and a
second computer device through a packet-switched data transmission network
comprising intermediate computer devices, where at least one of said
computer devices performs a network address translation and/or a protocol
conversion and where a security protocol exists comprising a key 15
management connection, the method comprising the steps of

- for determining what network address translations, if any, occur on packets
transmitted between the first computer device and the second computer
device: establishing a key management connection according to said security
protocol between the first computer device and the second computer device; 20
composing an indicator packet with a header part and a payload part of which
both comprise the network addresses of the first computer device and the
second computer device as seen by the node composing said packet;
transmitting and receiving said indicator packet within the key management
connection; and comparing in the received indicator packet the addresses 25
contained in the header part and the payload part, and
- using the information concerning the determined occurrences of network
address translations to securely communicating packets between the first
computer device and the second computer device.

According to a sixth aspect of the invention there is provided a method for 30
securely communicating packets between a first computer device and a
second computer device through a packet-switched data transmission network
comprising intermediate computer devices, where at least one of said
computer devices performs a network address translation and/or a protocol
conversion; where a security protocol is acknowledged which determines 35

7

transport-mode processing of packets for transmission and reception; and
where a high-level protocol checksum has been determined for checking the
integrity of received packets, the method comprising the steps of

- at the first computer device, performing transport-mode processing for
packets to be transmitted to the second computer device, 5
- at the second computer device, performing transport-mode processing for
packets received from the first computer device, said transport-mode
processing comprising the decapsulation of received packets and
- at the second computer device, updating the high-level protocol checksum
for decapsulated packets for compensating for changes, if any, caused by 10
network address translations.

According to a seventh aspect of the invention there is provided a method for
maintaining the unchanged form of address translations performed by
network address translation devices on encapsulated data transmission
packets communicated between a first computer device and a second 15
computer device through a packet-switched data transmission network, the
method comprising the steps of

- determining which address translations occur on actual data packets
transmitted with certain address information between the first computer
device and the second computer device through the packet-switched data 20
transmission network and
- forcing at least one of the first computer device and the second computer
device to transmit to the other computer device keepalive packets with
address information identical to that of actual data packets at a high enough
frequency so that network address translation devices constantly reuse the 25
mappings used for network address translation even when a certain fraction of
the packets communicated between the first computer device and the second
computer device are lost in the network.

Fig. 1a illustrates the known use of a host NAT,
Fig. 1b illustrates the known use of a port NAT, 30
Fig. 1c illustrates a known communication connection between nodes

through a packet-switched network,
Fig. 2a illustrates a certain Vendor ID payload applicable within the

context of the invention,

8

Fig. 2b illustrates a certain private payload applicable within the context of
the invention,

Fig. 2c illustrates a certain combined header structure applicable within
the context of the invention,

Fig. 3 illustrates certain method steps related to the application of the 5
invention,

Fig. 4 illustrates a transformation of header structures according to an
aspect of the invention, and

Fig. 5 illustrates a simplified block diagram of a network device used to
implement the method according to the invention. 10

The present invention combines and extends some of the methods of network
address translation, tunneling over UDP, IKE, and the IKE extension
mechanisms, in a novel and inventive way to produce a method for secure
communications across network address translations and protocol
conversions. The method can be made fully automatic and transparent to the 15
user.

A key point relating to the applicability of the invention is that – at the
priority date of the present patent application – in general only TCP
(described in RFC793) and UDP (described in RFC768) work over NAT.
This is because most NATs used in practise are port NATs, and this is the 20
form of NAT that provides most benefits with regards to the shortage of
globally routable IP addresses. The invention is not, however, limited to the
use of UDP and TCP as they are known at the priority date of this patent
application: in general it may be said that UDP and TCP are examples of
protocols that determine that connection identification information (i.e. 25
addressing and port numbering) that is mapped into another form in the
address transformation process. We may expect that other kinds of
communication protocols and address transformations emerge in the future.

The various aspects of the invention are related to

- determining whether a remote host supports a certain method which is 30
typically a secure communication method according to the invention (the
”methods supported” aspect),
- determining what network address translations and/or protocol conversions
occur on packets, if any (the ”occurring translations” aspect),

9

- tunneling packets inside a certain carefully selected protocol, typically UDP,
to make them traverse NATs (the ”selected tunnelling” aspect),
- using a keepalive method to make sure that involved NAT devices and other
devices that use timeouts for mappings do not lose the mapping for the
communicating hosts (the ”keepalive” aspect), 5
- compensating for the translations that occur before verifying the message
authentication code for AH packets (the ”compensation/authentication”
aspect) and
- performing address translations at either the sending or receiving node to
compensate for multiple hosts being mapped to a single public address (the 10
”compensation/mapping” aspect).

The process of encapsulating data packets for transmission over a different
logical network is called tunneling. Typically, in the case of the IP protocol,
tunneling involves adding a new IP header in front of the original packet,
setting the protocol field in the new header appropriately, and sending the 15
packet to the desired destination (endpoint of the tunnel). Tunneling may also
be implemented by modifying the original packet header fields or replacing
them with a different header, as long as a sufficient amount of information
about the original packet is saved in the process so that it will be possible to
reconstruct the packet at the end of the tunnel into a form sufficiently similar 20
to the original packet entering the tunnel. The exact amount of information
that needs to be passed with the packet depends on the network protocols, and
information may be passed either explicitly (as part of the tunnelled packet) or
implicitly (by the context, as determined e.g. by previously transmitted
packets or a context identifier in the tunneled packet). 25

It is well known in the art how to tunnel packets over a network. At least the
references given as RFC1226, RFC1234, RFC1241, RFC1326, RFC1701,
RFC1853, RFC2003, RFC2004, RFC2107, RFC2344, RFC2401, RFC2406,
RFC2473 and RFC2529 relate to the subject of tunneling. For example,
RFC1234 30

presents a method of tunneling IPX frames over UDP. In that method, packets
are tunneled to a fixed UDP port and to the decapsulator's IP address.

The IPSEC protocol mentioned in the background description typically uses
the Internet Key Exchange or IKE protocol (known from references
RFC2409, RFC2408 and RFC2407) for authenticating the communicating 35

10

parties to each other, deriving a shared secret known only to the
communicating parties, negotiating authentication and encryption methods to
be used for the communication, and agreeing on a security parameter index
(SPI) value and a set of selectors to be used for the communication. The IKE
protocol was previously known as the ISAKMP/Oakley, where the acronym 5
ISAKMP comes from Internet Security Association Key Management
Protocol. Besides said normal negotiation specified in the IKE standard, IKE
supports certain mechanisms for extension. The Vendor ID payload known
from reference RFC2408 allows communicating parties to determine whether
the other party supports a particular private extension mechanism. The IPSEC 10
DOI (Domain of Interpretation) known as RFC2407 reserves certain numeric
values for such private extensions.

Currently, the well-known Vendor ID payload is defined to have the format
illustrated in Fig. 2a, where the column numbers correspond to bit positions.
For the purposes of the present invention the Vendor ID field 201 is the most 15
important part of the Vendor ID payload. In the context of the IKE protocol,
negotiating whether the remote host supports a certain method for providing
secure network communications can be performed as follows. The
terminology used here is borrowed from the IKE documents.

The IKE protocol determines the so-called Phase 1 of the mutual exchange of 20
messages between the Initiator (i.e., the node first sending a packet to the
other) and the Responder (i.e., the node first receiving a packet). Fig. 3
illustrates an exchange of first Phase 1 messages between the Initiator and the
Responder. According to the ”methods supported” aspect of the invention
both devices include a certain Vendor ID Payload in a certain Phase 1 25
message which is most advantageously their first Phase 1 message. This
payload indicates that they support the method in question.

In Fig. 3 the Vendor ID fields contained within the Initiator’s first (or other)
Phase 1 message is schematically shown as 201’ and the Vendor ID fields
contained within the Responder’s first (or other) Phase 1 message is 30
schematically shown as 201’’. To indicate support for a certain method the
Vendor ID field in the Vendor ID Payload is basically an identification of that
method: advantageously it is the MD5 hash of a previously known
identification string, e.g. "SSH IPSEC NAT Traversal Version 1", without
any trailing zeroes or newlines. Producing MD5 hashes of arbitrary character 35

11

sequences is a technique well known in the art for example from the
publication RFC1321 mentioned in the list of references.

Next we will address the ”occurring translations” aspect of the invention. In
addition to the above-mentioned Phase 1, the IKE protocol determines the so-
called Phase 2 of the mutual exchange of messages between the Initiator and 5
the Responder. According to the ”occurring translations” aspect of the
invention the parties can determine which translations occur by including the
IP addresses they see in private payloads of certain Phase 2 Quick Mode
messages, which are most advantageously their first Phase 2 Quick Mode
messages. Any unused number in the private payload number range can be 10
used to signify such use of the private payload (e.g. 157, which is unused at
the priority date of the present patent application).

The private payload used to reveal the occurring translations can have e.g. the
format illustrated in Fig. 2b. Field 211 contains a type code that identifies the
types of the addresses that appear in fields 212 and 213. Field 212 contains 15
the address of the Initiator as seen by the node sending the message, and field
213 contains the address of the Responder as seen by the node sending the
message. Fig. 3 shows the exchange of (first) Phase 2 Quick Mode messages
between the Initiator and the Responder so that the corresponding fields 211’,
212’ and 213’ are included in the message sent by the former and the fields 20
211’’, 212’’ and 213’’ are included in the message sent by the latter.

According to known practice the addresses of the Initiator and Responder are
also included in the header of the packet that contains the payload of Fig. 2b.
In the header they are susceptible to address translations and other processing
whereas in the private payload they are not. When the packet with the payload 25
of Fig. 2b is received, the addresses contained in it are compared with those
seen in the packet header. If they differ, then an address translation occurred
on the packet. Later we will refer to the use of the standard IKE port number
500 together with applying the invention; as an additional way of detecting
occurred translations the port numbers of the received packet can also be 30
compared against the standard IKE port number 500 to determine if port
translations occurred.

An aspect of some importance when handling the addresses is that the UDP
source port of the packet can be saved for later use. It would usually be saved
with the data structures for Phase 1 ISAKMP security associations, and would 35

12

be used to set up compensation processing for Phase 2 IPSEC security
associations.

To use the method described above to implement the ”occurred translations”
aspect of the invention, the hosts must modify their Phase 2 identification
payloads: the payload illustrated in Fig. 2b is not known in the existing 5
standards. One possibility is to restrict the payloads to the ID_IPV4_ADDR
and ID_IPV6_ADDR types, which would be appropriate for host-to-host
operation.

Next we will address the ”selected tunnelling”,
”compensation/authentication” and ”compensation/mapping” aspects of the 10
invention. According to this aspect of the invention the actual data packets
can be tunneled over the same connection which is used to set up the security
features of the communication connection, e.g. the UDP connection used for
IKE. This ensures that the actual data packets will experience the same
translations as the IKE packets did when the translation was determined. 15
Taken that the standard port number 500 has been determined for IKE, this
would mean that all packets are sent with source port 500 and destination port
500, and a method is needed to distinguish the real IKE packets from those
containing encapsulated data. One possible way of doing this takes advantage
of the fact that the IKE header used for real IKE packets contains an Initiator 20
Cookie field: we may specify that Initiators that support this aspect of the
invention never generate cookies that have all zeroes in their four first bytes.
The value zero in the corresponding four bytes is then used to recognize the
packet as a tunneled data packet. In this way, tunneled data packets would
have four zero bytes at the beginning of the UDP payload, whereas real IKE 25
packets never would.

Fig. 4 illustrates the encapsulation of actual IPSEC packets into UDP for
transmission. Basically, a UDP header 403 and a short intermediate header
404 are inserted after the IP header 401 already in the packet (with the
protocol field copied to the intermediate header). The IP header 401 is slightly 30
modified to produce a modified IP header 401’. The IP payload 402 stays the
same. The simple illustration of the unencapsulated IPSEC packet on the left
should not be misinterpreted: this packet is not plaintext but has been
processed according to AH or ESP or corresponding other transformation
protocol in the sending node before its encapsulation into UDP. 35

13

Without limiting the generality, it is assumed in the presentation here that the
encapsulation according to Fig. 4 is always performed by the same nodes that
perform IPSEC processing (either an end node or a VPN device). It should
also be noted that instead of encapsulating the IPSEC packets into UDP they
could be encapsulated into TCP. This alternative would probably require 5
using fake session starts and ends so that the first packet has the SYN bit and
the last packet has the FIN bit, as specified in the TCP protocol.

In encapsulating an actual data packet or a ”datagram” according to Fig. 4,
the original IP header 401 – defined in RFC791 – is modified to produce the
modified IP header 401’ as follows: 10

* the Protocol field in the IP header (not separately shown) is replaced by
protocol 17 for UDP in accordance with RFC768,

* the Total Length field in the IP header (not separately shown) is
incremented by the combined size of the UDP and intermediate headers (total
16 bytes) and 15

* the Header Checksum field in the IP header (not separately shown) is
recomputed in accordance with the rules given in RFC791.

As seen from Fig. 4, an UDP header 403 – as defined in RFC768 – and an
intermediate header 404 are inserted after the IP header. The UDP header is 8
octets and the intermediate header is 8 octets, for a total of 16 octets. These 20
headers are treated as one in the following discussion. The combined header
has most advantageously the format illustrated in Fig. 2c. Fields of this header
are set as follows:

* The Source Port field 221 is set to 500 (same as IKE). If the packet goes
through NAT, this may be different when the packet is received. 25

* The Destination Port field 222 is set to the port number from which the
other end appears to be sending packets. If the packet goes through NAT, the
recipient may see a different port number here.

* The UDP Length field 223 is the length of the UDP header plus the length
of the UDP data field. In this case, it also includes the intermediate header. 30
The value is computed in bytes as 16 plus the length of the original IP packet

14

payload (not including the original IP header, which is included in the Length
field in the IP header).

* The UDP Checksum field 224 is most advantageously set to 0. The UDP
checksum is optional, and we do not wish to calculate or check it with this
tunneling mechanism. Integrity of the data is assumed to be protected by an 5
AH or ESP header within the tunneled packet.

* The Must be zero field 225: This field must contain a previously agreed
fixed value, which is most advantageously all zeroes. The field overlaps with
the first four bytes of the Initiator Cookie field in an actual IKE header. Any
Initiator that supports this aspect of the invention must not use a cookie where 10
the first four bytes are zero. These zero bytes are used to separate the tunneled
packets from real ISAKMP packets. Naturally some other fixed value than
”all zeroes” could be chosen, but the value must be fixed for this particular
use.

* Protocol field 226: The value of this field is copied from the known 15
Protocol field in the original IP header (not separately shown in Fig. 4).

* Reserved field 227: most advantageously sent as all zeroes; ignored on
reception.

The sender inserts this header in any packets tunneled to a destination behind
NAT. Information about whether NAT is used can be stored on a per SA 20
(Security Association) basis in the policy manager. The encapsulation referred
to in Fig. 4 can be implemented either as a new transform or as part of the
otherwise known AH and ESP transforms.

The encapsulation operation makes use of the UDP port number and IP
address of the remote host, which were determined during the IKE 25
negotiation.

The receiver decapsulates packets from this encapsulation before doing AH
or ESP processing. Decapsulation removes this header and updates the
Protocol, Length, and Checksum fields of the IP header. No configuration
data (port number etc.) is needed for this operation. 30

The decapsulation should be performed only if all of the following selectors
match:

15

* destination address is the destination address of this host,

* source address is the address of a host with which this host has agreed to
use this tunnelling,

* the Protocol field indicates UDP,

* the Destination port field value is 500 and 5

* the Source port field value indicates the port with which this host has
agreed to use this tunneling. (Note that there may be multiple source
addresses and ports for which this tunneling is performed; each of them is
treated by a separate set of selectors.)

During decapsulation the source address in the received packet can be 10
replaced by the real source address received during the IKE negotiation. This
implements the compensation for AH MAC verification. The address is again
changed in the post-processing phase below. Because of this compensation,
the standard AH and ESP transforms can be used unmodified.

In Fig. 3 the AH/ESP processing at the sending node is schematically shown 15
as block 301, encapsulation of datagrams into UDP is schematically shown as
block 302, the corresponding decapsulation of datagrams from UDP is
schematically shown as block 303 and AH/ESP processing at the receiving
node is schematically shown as block 304.

Additional compensation must be done after the packet has been decapsulated 20
from AH or ESP. This additional decapsulation must deal with the fact that
the outer packet actually went through NAT (illustrated schematically in Fig.
3 as block 305), and consequently the plaintext packet must also undergo a
similar transformation. The recipient must see the address of the NAT device
as the address of the host, rather than the original internal address. 25
Alternatively, this compensation could have been performed by the sender of
the packet before encapsulating it within AH or ESP.

There are several alternatives for this additional compensation for various
special cases (the best compensation depends on the particular application):

* Allocating a range of network addresses for this processing (say, in the link-30
local use range 169.254.x.x - the actual values do not matter; basically we just
want an arbitrary network that no-one else is using). An address in this range

16

is allocated for each <natip, ownip, natport, ownport> combination, where
natip means the IP address of the NAT, ownip means the processing device’s
own IP address, natport means the port number at the NAT and ownport
means the processing device’s own port number. The remote address in the
packet is replaced by this address before the packet is sent to protocol stacks. 5

* As part of the compensation, the TCP checksum for internal hosts must be
recomputed if host addresses or port numbers changed. TCP checksum
computations may also be incremental, as is known from RFC1071. Port
NAT may need to be performed for the source port.

* When used as a VPN between two sites using incompatible (possibly 10
overlapping) private address spaces, address translation must be performed to
make the addresses compatible with local addresses.

* When used as a VPN between two sites using compatible (non-overlapping)
private address spaces, and tunnel mode is used, no additional compensation
may be needed. 15

* Address translation may need to be performed for the contents of certain
protocol packets, such as FTP (known from RFC959) or H.323. Other similar
issues are discussed in the reference given as HoldregeSrisuresh99.

* It may also be possible to use random addresses for the client at the server,
and perform address translation to this address. This could allow the server to 20
distinguish between multiple clients behind the same NAT, and could avoid
manual configuration of the local address space.

* The compensation operation may or may not interact with the TCP/IP stack
on the local machine to reserve UDP port numbers.

In general, this invention does not significantly constrain the method used to 25
compensate for inner packets the NAT occurring for the outer header. The
optimal method for performing such compensation may be found among the
above-given alternatives by experimenting, or some other optimal method
could be presented.

Next we will address the ”keepalive” aspect of the invention, i.e. ensuring 30
that the network address translations performed in the network do not change
after the translations that occur have been determined. Network address

17

translators cache the information about address mapping, so that they can
reverse the mapping for reply packets. If TCP is used, the address translator
may look at the FIN bit of the TCP header to determine when it can drop a
particular mapping. For UDP, however, there is no explicit termination
indication for flows. For this reason, many NATs will time out mappings for 5
UDP quite fast (even as fast as in 30 seconds). Thus, it becomes necessary to
force the mapping to be maintained.

A possible way of ensuring the maintaining of mappings is to send keepalive
packets frequently enough that the address translation remains in the cache.
When computing the required frequency, one must take into account that 10
packets may be lost in the network, and thus multiple keepalives must be sent
within the estimated shortest period in which NATs may forget the mapping.
The appropriate frequency depends on both the period the mappings are kept
cached and on the packet loss probability of the network; optimal frequency
values for various context may be found through experimenting. 15

Keepalive packets do not need to contain any meaningful information other
than the necessary headers that are equal to the data packet headers to ensure
that the keepalive packets will be handled exactly in the same way as the
actual data packets. A keepalive packet may contain an indicator that
identifies it as a keepalive packet and not a data packet; however it may also 20
be determined that all packets that do not contain meaningful payload
information are interpreted to be keepalive packets. In Fig. 3 the transmission
of keepalive packets is schematically illustrated by block 306 and the
reception and discarding of them is schematically illustrated by block 307. It
should be noted that the use of keepalive packets is not needed at all if actual 25
data packets are transmitted frequently enough and/or the connection is to
remain valid only for such a short time (e.g. a few seconds) that it is
improbable that any intermediate device would delete the mapping
information from its cache. Keepalive packets need to be transmitted in one
direction only, although they may be transmitted also bidirectionally; the 30
drawback resulting from their bidirectional transmission is the resulting
increase in unnecessary network traffic. The invention does not limit the
direction(s) in which keepalive packets (if any) are transmitted.

Fig. 5 is a simplified block diagram of a network device 500 that can act as
the Initiator or the Responder according to the method of providing secure 35
communications over network address translations in accordance with the

18

invention. Network interface 501 connects the network device 500 physically
to the network. Address management block 502 keeps track of the correct
network addresses, port numbers and other essential public identification
information of both the network device 500 itself and its peer (not shown).
IKE block 503 is responsible for the key management process and other 5
activities related to the exchange of secret information. Encryption/decryption
block 504 implements the encryption and decryption of data once the secret
key has been obtained by the IKE block 503. Compensation block 505 is used
to compensate for the permissible transformations in the transmitted and/or
received packets according to the invention. Either one of blocks 504 and 505 10
may be used to transmit, receive and discard keepalive packets. Packet
assembler/disassembler block 506 is the intermediator between blocks 502 to
505 and the physical network interface 501. All blocks operate under the
supervision of a control block 507 which also takes care of the routing of
information between the other blocks and the rest of the network device, for 15
example for displaying information to the user through a display unit (not
shown) and obtaining commands from the user through a keyboard (not
shown). The blocks of Fig. 5 are most advantageously implemented as pre-
programmed operational procedures of a microprocessor, which
implementation is known as such to the person skilled in the art. Other 20
arrangements than that shown in Fig. 5 may as well be used to reduce the
invention into practice.

Even though the present invention was presented in the context of IKE, and
tunneling using the IKE port, it should be understood that the invention
applies to also other analogous cases using different packet formatting 25
methods, different negotiation details, a different key exchange protocol, or a
different security protocol. The invention may also be applicable to non-IP
protocols with suitable characteristics. The invention is equally applicable to
both IPv4 and IPv6 protocols. The invention is also intended to apply to
future revisions of the IPSEC and IKE protocols. 30

It should also be understood that the invention can also be applied to protocol
translations in addition to just address translations. Adapting the present
invention to protocol translations should be well within the capabilities of a
person skilled in the art given the description here and the discussions
regarding protocol translation in the former patent applications of the same 35
applicant mentioned above and incorporated herein by reference.

19

LIST OF REFERENCES

BorellaLo99

M. Borella, J. Lo: Realm Specific IP: Protocol Specification, draft-ietf-nat-
rsip-protocol-00.txt, Work in Progress, Internet Engineering Task Force,
1999. 5

HoldregeSrisuresh99

M. Holdrege, P. Srisuresh: Protocol Complications with the IP Network
Address Translator (NAT), draft-ietf-nat-protocol-complications-00.txt, Work
in Progress, Internet Engineering Task Force, 1999.

LoBorella99 10

J. Lo, M. Borella: Real Specific IP: A Framework, draft-ietf-nat-rsip-
framework-00.txt, Work in Progress, Internet Engineering Task Force, 1999.

Rekhter99

Y. Rekhter: Implications of NATs on the TCP/IP architecture, draft-ietf-nat-
arch-implications-00.txt, Internet Engineering Task Force, 1999. 15

RFC768

J. Postel: User Datagram Protocol, RFC 768, Internet Engineering Task
Force, 1980.

RFC791

J. Postel: Internet Protocol, RFC 791, Internet Engineering Task Force, 1981. 20

RFC793

J. Postel: Transmission Control Protocol, RFC 793, Internet Engineering Task
Force, 1981.

RFC959

J. Postel, J. Reynolds: File Transfer Protocol, RFC 959, Internet Engineering 25
Task Force, 1985.

20

RFC1071

R. Braden, D. Borman, C. Partridge: Computing the Internet checksum, RFC
1071, Internet Engineering Task Force, 1988.

RFC1226

B. Kantor: Internet protocol encapsulation of AX.25 frames, RFC 1226, 5
Internet Engineering Task Force, 1991.

RFC1234

D. Provan: Tunneling IPX traffic through IP networks, RFC 1234, Internet
Engineering Task Force, 1991.

RFC1241 10

R. Woodburn, D. Mills: Scheme for an internet encapsulation protocol:
Version 1, RFC 1241, Internet Engineering Task Force, 1991.

RFC1321

R. Rivest: The MD5 message-digest algorithm, RFC 1321, Internet
Engineering Task Force, 1992. 15

RFC1326

P. Tsuchiya: Mutual Encapsulation Considered Dangerous, RFC 1326,
Internet Engineering Task Force, 1992.

RFC1631

K. Egevang, P. Francis: The IP Network Address Translator (NAT), RFC 20
1631, Internet Engineering Task Force, 1994.

RFC1701

S. Hanks, T. Li, D. Farinacci, P. Traina: Generic Routing Encapsulation, RFC
1701, Internet Engineering Task Force, 1994.

21

RFC1702

S. Hanks, T. Li, D. Farinacci, P. Traina: Generic Routing Encapsulation over
IPv4 networks, RFC 1702, Internet Engineering Task Force, 1994.

RFC1853

W. Simpson: IP in IP Tunneling, RFC 1853, Internet Engineering Task Force, 5
1995.

RFC2003

C. Perkins: IP Encapsulation within IP, RFC 2003, Internet Engineering Task
Force, 1996.

RFC2004 10

C. Perkins: IP Encapsulation within IP, RFC 2004, Internet Engineering Task
Force, 1996.

RFC2107

K. Hamzeh: Ascend Tunnel Management Protocol, RFC 2107, Internet
Engineering Task Force, 1997. 15

RFC2344

G. Montenegro: Reverse Tunneling for Mobile IP, FC 2344, Internet
Engineering Task Force, 1998.

RFC2391

P. Srisuresh, D. Gan: Load Sharing using IP Network Address Translation 20
(LSNAT), RFC 2391, Internet Engineering Task Force, 1998.

RFC2401

S. Kent, R. Atkinson: Security Architecture for the Internet Protocol, RFC
2401, Internet Engineering Task Force, 1998.

RFC2402 25

22

S. Kent, R. Atkinson: IP Authentication Header, RFC 2402, Internet
Engineering Task Force, 1998.

RFC2406

S. Kent, R. Atkinson: IP Encapsulating Security Payload, RFC 2406, Internet
Engineering Task Force, 1998. 5

RFC2407

D. Piper: The Internet IP Security Domain of Interpretation for ISAKMP.
RFC 2407, Internet Engineering Task Force, 1998.

RFC2408

D. Maughan, M. Schertler, M. Schneider, J. Turner: Internet Security 10
Association and Key Management Protocol (ISAKMP), RFC 2408, Internet
Engineering Task Force, 1998.

RFC2409

D. Hakins, D. Carrel: The Internet Key Exchange (IKE), RFC 2409, Internet
Engineering Task Force, 1998. 15

RFC2473

A. Conta, S. Deering: Generic Packet Tunneling in IPv6 Specification, RFC
2473, Internet Engineering Task Force, 1998.

RFC2529

B. Carpenter, C. Jung: Transmission of IPv6 over IPv4 Domains without 20
Explicit Tunnels, RFC 2529, Internet Engineering Task Force, 1999.

Srisuresh98Terminology

P. Srisuresh: IP Network Address Translator (NAT) Terminology and
Considerations, draft-ietf-nat-terminology-01.txt, Work in Progress, Internet
Engineering Task Force, 1998. 25

Srisuresh98Security

23

P. Srisuresh: Security Model for Network Address Translator (NAT)
Domains, draft-ietf-nat-security-01.txt, Work in Progress, Internet
Engineering Task Force, 1998.

SrisureshEgevang98

P. Srisuresh, K. Egevang: Traditional IP Network Address Translator 5
(Traditional NAT), draft-ietf-nat-traditional-01.txt, Work in Progress, Internet
Engineering Task Force, 1998.

TYS99

W. Teo, S. Yeow, R. Singh: IP Relocation through twice Network Address
Translators (RAT), draft-ietf-nat-rnat-00.txt, Work in Progress, Internet 10
Engineering Task Force, 1999.

24

Claims

1. A method for securely communicating packets between a first computer
device (181, INITIATOR) and a second computer device (185,
RESPONDER) through a packet-switched data transmission network (184)
comprising intermediate computer devices (183, 187, 305), where at least one 5
of said computer devices performs a network address translation and/or a
protocol conversion, characterised in that the method comprises the steps of

- determining what network address translations, if any, occur on packets
transmitted between the first computer device and the second computer
device, 10
- taking (301) packets conforming to a first protocol and encapsulating (302)
them into packets conforming to a second protocol, which second protocol is
capable of traversing network address translations,
- transmitting said packets conforming to said second protocol from the first
computer device to the second computer device and 15
- decapsulating (303) said transmitted packets conforming to said second
protocol into packets conforming (304) to said first protocol.

2. A method according to claim 1, characterised in that the step of taking
(301) packets conforming to a first protocol and encapsulating (302) them
into packets conforming to a second protocol comprises the substeps of 20

- taking packets conforming to the Internet Protocol (401, 402),
- processing said packets according to the IPSEC protocol suite and
- encapsulating the processed packets into packets conforming to the User
Datagram Protocol (401’, 403, 404).

3. A method according to claim 1, characterised in that the step of taking 25
(301) packets conforming to a first protocol and encapsulating (302) them
into packets conforming to a second protocol comprises the substeps of

- taking packets conforming to the Internet Protocol,
- processing said packets according to the IPSEC protocol suite and
- encapsulating the processed packets into packets conforming to the 30
Transmission Control Protocol.

4. A method according to claim 1, characterised in that it further
comprises the step of compensating for the network address translations on

25

said second protocol in the packets that are transmitted from the first
computer device to the second computer device.

5. A method according to claim 4, characterised in that said step of
compensating for the network address translations comprises a step of
performing address translation based on the information obtained in the step 5
of determining what network address translations, if any, occur on packets
transmitted between the first computer device and the second computer
device.

6. A method according to claim 5, characterised in that said step of
compensating for the network address translations further comprises a step of 10
performing port number translation based on the information obtained in the
step of determining what network address translations, if any, occur on
packets transmitted between the first computer device and the second
computer device.

7. A method according to claim 1, characterised in that it additionally 15
comprises the step of periodically transmitting (306, 307) keepalive packets
between the first computer device and the second computer device to ensure
that the network address translations, if any, occurring on packets transmitted
between the first computer device and the second computer device stay the
same. 20

8. A method for conditionally setting up a secure communication
connection between a first computer device (181, INITIATOR) and a second
computer device (185, RESPONDER) through a packet-switched data
transmission network (184) comprising intermediate computer devices (183,
187, 305), where at least one of said computer devices performs a network 25
address translation and/or a protocol conversion, characterised in that the
method comprises the steps of

- finding out (201’, 201’), whether or not the second computer device
supports a communication method where: it is determined what network
address translations, if any, occur on packets transmitted between the first 30
computer device and the second computer device; packets are taken that
conform to a first protocol and encapsulated into packets that conform to a
second protocol, which second protocol is capable of traversing network
address translations; said packets conforming to said second protocol are

26

transmitted from the first computer device to the second computer device; and
said transmitted packets conforming to said second protocol are decapsulated
into packets conforming to said first protocol,
- as a response to a finding indicating that the second computer device
supports said communication method, setting up a secure communication 5
connection between the first computer device and the second computer device
in which communication connection said communication method is employed
and
- as a response to a finding indicating that the second computer device does
not support said communication method, disabling the use of said 10
communication method between the first and the second computer devices.

9. A method for tunnelling packets between a first computer device (181,
INITIATOR) and a second computer device (185, RESPONDER) through a
packet-switched data transmission network (184) comprising intermediate
computer devices (183, 187, 305), where at least one of said computer 15
devices performs a network address translation and/or a protocol conversion,
characterised in that the method comprises the steps of

- establishing a bidirectional tunnelling mode between the first computer
device and the second computer device by exchanging packets conforming to
a secure communication protocol, 20
- taking (301) packets conforming to a first protocol and encapsulating (302)
them at the first computer device into packets conforming to a second
protocol, which second protocol is capable of traversing network address
translations,
- transmitting said packets conforming to said second protocol from the first 25
computer device to the second computer device,
- decapsulating (303) said transmitted packets conforming to said second
protocol into packets conforming (304) to said first protocol at the second
computer device,
- obtaining information about the address translations occurred on packets 30
transmitted between the first computer device and the second computer
device and
- using said obtained information to modify the established bidirectional
tunnelling mode between the first computer device and the second computer
device. 35

27

10. A method according to claim 9, characterised in that the step of
obtaining information about the address translations occurred on packets
transmitted between the first computer device and the second computer
device comprises the substeps of

- transmitting a packet between the first computer device and the second 5
computer device, said packet comprising a header part and a payload part, and
- comparing a network address transmitted in said payload part to a network
address transmitted in said header part in order to find out what changes have
occurred on said network address transmitted in said header part.

11. A method according to claim 9, characterised in that it additionally 10
comprises the step of periodically transmitting (306, 307) keepalive packets
between the first computer device and the second computer device to ensure
that the network address translations, if any, occurring on packets transmitted
between the first computer device and the second computer device stay the
same. 15

12. A method according to claim 9, characterised in that the step of using
said obtained information to modify the operation of the tunnelling of packets
comprises the substep of introducing an address translation before the
encapsulation (302) of packets in order to compensate for the network address
translations that occur on packets transmitted between the first computer 20
device and the second computer device.

13. A method according to claim 9, characterised in that the step of using
said obtained information to modify the operation of the tunnelling of packets
comprises the substep of introducing an address translation after the
decapsulation (303) of packets in order to compensate for the network address 25
translations that occur on packets transmitted between the first computer
device and the second computer device.

14. A method for tunnelling packets between a first computer device (181,
INITIATOR) and a second computer device (185, RESPONDER) through a
packet-switched data transmission network (184) comprising intermediate 30
computer devices (183, 187, 305), in which data transmission network there
exists a security protocol comprising a key management connection that
employs a specific packet format for key management packets, characterised
in that the method comprises the steps of

28

- encapsulating data packets that are not key management packets into said
specific packet format for key management packets,
- transmitting said data packets encapsulated into the specific packet format
from the first computer device to the second computer device,
- discriminating at the second computer device the data packets encapsulated 5
into the specific packet format from actual key management packets and
- decapsulating the data packets encapsulated into the specific packet format.

15. A method according to claim 14, characterised in that the step of
encapsulating data packets that are not key management packets comprises
the substeps of 10

- encapsulating data packets that are not key management packets into a key
management packet format specified by the Internet Key Exchange protocol
which defines a certain Initiator Cookie field and
- inserting into the Initiator Cookie field of an encapsulated data packet a
value indicating that the encapsulated packet is a data packet and not a key 15
management packet.

16. A method for securely communicating packets between a first computer
device (181, INITIATOR) and a second computer device (185,
RESPONDER) through a packet-switched data transmission network (184)
comprising intermediate computer devices (183, 187, 305), where at least one 20
of said computer devices performs a network address translation and/or a
protocol conversion and where a security protocol exists comprising a key
management connection, characterised in that the method comprises the
steps of

- for determining what network address translations, if any, occur on packets 25
transmitted between the first computer device and the second computer
device: establishing a key management connection according to said security
protocol between the first computer device and the second computer device;
composing an indicator packet with a header part and a payload part of which
both comprise the network addresses of the first computer device and the 30
second computer device as seen by the node composing said packet;
transmitting and receiving said indicator packet within the key management
connection; and comparing in the received indicator packet the addresses
contained in the header part and the payload part, and

29

- using the information concerning the determined occurrences of network
address translations to securely communicating packets between the first
computer device and the second computer device.

17. A method according to claim 16, characterised in that the security
protocol determines a standard port number for a key management 5
connection, and the method further comprises the step of comparing in the
received indicator packet a source port number against said standard port
number for a key management connection.

18. A method for securely communicating packets between a first computer
device (181, INITIATOR) and a second computer device (185, 10
RESPONDER) through a packet-switched data transmission network (184)
comprising intermediate computer devices (183, 187, 305), where at least one
of said computer devices performs a network address translation and/or a
protocol conversion; where a security protocol is acknowledged which
determines transport-mode processing of packets for transmission and 15
reception; and where a high-level protocol checksum has been determined for
checking the integrity of received packets, characterised in that the method
comprises the steps of

- at the first computer device, performing transport-mode processing for
packets to be transmitted to the second computer device, 20
- at the second computer device, performing transport-mode processing for
packets received from the first computer device, said transport-mode
processing comprising the decapsulation of received packets and
- at the second computer device, updating the high-level protocol checksum
for decapsulated packets for compensating for changes, if any, caused by 25
network address translations.

19. A method according to claim 18, characterised in that

- the step of performing transport-mode processing at the first computer
device for packets transmitted to the second computer device takes the form
of performing transport-mode processing as determined in the IPSEC 30
protocol suite, and
- the step of performing transport-mode processing at the second computer
device for packets received from the first computer device takes the form of

30

performing transport-mode processing as determined in the IPSEC protocol
suite.

20. A method according to claim 18, characterised in that it additionally
comprises the steps of

- at the first computer device, after performing transport-mode processing for 5
a packet to be transmitted to the second computer device, encapsulating the
processed packet into a packet conforming to a certain second protocol, which
second protocol is capable of traversing network address translations and
- at the second computer device, before performing transport-mode
processing for a packet received from the first computer device, decapsulating 10
the received packet from the packet conforming to said second protocol and
replacing a number of network addresses in the decapsulated packet with a
corresponding number of network addresses taken from the received packet
before decapsulation.

21. A method according to claim 18, characterised in that the step of 15
updating the high-level protocol checksum takes the form of recomputing the
checksum for the transport-mode-processed packets.

22. A method according to claim 18, characterised in that the method
additionally comprises the step of obtaining information about the network
addresses of the first and second computer devices before and after network 20
address translations, and the step of updating the high-level protocol
checksum takes the form of incrementally updating the checksum based on
the obtained information about the network addresses of the first and second
computer devices before and after network address translations.

23. A method for maintaining the unchanged form of address translations 25
performed by network address translation devices on encapsulated actual data
packets transmitted with certain address information between a first computer
device (181, INITIATOR) and a second computer device (185,
RESPONDER) through a packet-switched data transmission network (184),
characterised in that the method comprises the step of 30

- forcing at least one of the first computer device and the second computer
device to transmit (306) to the other computer device keepalive packets with
address information identical to that of actual data packets at a high enough
frequency so that network address translation devices constantly reuse the

31

mappings used for network address translation (305) even when a certain
fraction of the packets communicated between the first computer device and
the second computer device are lost in the network.

32

(57) Abstract

This invention provides a method for providing network security services,
such as those provided by the IPSEC protocol, through network address
translation (NAT). The method is based on determining the transformations
that occur on a packet and compensating for the trasformations. Because only
TCP and UDP protocols work through NATs, the IPSEC AH/ESP packets are
encapsulated into UDP packets for transport. Special operations are
performed to allow reliable communications in such environments.

