MPLS D. Frost, Ed. Internet-Draft S. Bryant, Ed. Intended status: Informational Cisco Systems Expires: January 20, 2012 July 19, 2011 A Packet Loss and Delay Measurement Profile for MPLS-based Transport Networks draft-ietf-mpls-tp-loss-delay-profile-04 Abstract Procedures and protocol mechanisms to enable efficient and accurate measurement of packet loss, delay, and throughput in MPLS networks are defined in RFC XXXX. The MPLS Transport Profile (MPLS-TP) is the set of MPLS protocol functions applicable to the construction and operation of packet- switched transport networks. This document describes a profile of the general MPLS loss, delay, and throughput measurement techniques that suffices to meet the specific requirements of MPLS-TP. This document is a product of a joint Internet Engineering Task Force (IETF) / International Telecommunication Union Telecommunication Standardization Sector (ITU-T) effort to include an MPLS Transport Profile within the IETF MPLS and Pseudowire Emulation Edge-to-Edge (PWE3) architectures to support the capabilities and functionalities of a packet transport network as defined by the ITU-T. This Informational Internet-Draft is aimed at achieving IETF Consensus before publication as an RFC and will be subject to an IETF Last Call. [RFC Editor, please remove this note before publication as an RFC and insert the correct Streams Boilerplate to indicate that the published RFC has IETF consensus.] [RFC Editor, please replace XXXX with the RFC number assigned to draft-ietf-mpls-loss-delay.] Status of this Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Frost & Bryant Expires January 20, 2012 [Page 1] Internet-Draft MPLS-TP Loss and Delay Measurement July 2011 Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on January 20, 2012. Copyright Notice Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. 1. Introduction Procedures for the measurement of packet loss, delay, and throughput in MPLS networks are defined in [I-D.ietf-mpls-loss-delay]. This document describes a profile, i.e. a simplified subset, of these procedures that suffices to meet the specific requirements of MPLS- based transport networks [RFC5921] as defined in [RFC5860]. This profile is presented for the convenience of implementors who are concerned exclusively with the transport network context. The use of the profile specified in this document is purely optional. Implementors wishing to provide enhanced functionality that is within the scope of [I-D.ietf-mpls-loss-delay] but outside the scope of this profile may do so, whether or not the implementation is restricted to the transport network context. The assumption of this profile is that the devices involved in a measurement operation are configured for measurement by a means external to the measurement protocols themselves, for example via a Network Management System (NMS) or separate configuration protocol. The manageability considerations in [I-D.ietf-mpls-loss-delay] apply, Frost & Bryant Expires January 20, 2012 [Page 2] Internet-Draft MPLS-TP Loss and Delay Measurement July 2011 and further information on MPLS-TP network management can be found in [RFC5950]. This document is a product of a joint Internet Engineering Task Force (IETF) / International Telecommunication Union Telecommunication Standardization Sector (ITU-T) effort to include an MPLS Transport Profile within the IETF MPLS and Pseudowire Emulation Edge-to-Edge (PWE3) architectures to support the capabilities and functionalities of a packet transport network as defined by the ITU-T. 2. MPLS-TP Measurement Considerations The measurement considerations discussed in Section 2.9 of [I-D.ietf-mpls-loss-delay] apply also in the context of MPLS-TP, except for the following, which pertain to topologies excluded from MPLS-TP: o Equal Cost Multipath considerations (Section 2.9.4 of [I-D.ietf-mpls-loss-delay]) o Considerations for direct Loss Measurement (LM) in the presence of Label Switched Paths constructed via the Label Distribution Protocol (LDP) or utilizing Penultimate Hop Popping (Section 2.9.8 of [I-D.ietf-mpls-loss-delay]) 3. Packet Loss Measurement (LM) Profile When an LM session is externally configured, the values of several protocol parameters can be fixed in advance at the endpoints involved in the session, so that negotiation of these parameters is not required. These parameters, and their default values as specified by this profile, are as follows: Parameter Default Value ----------------------------------------- -------------------------- Query control code In-band response requested Byte/packet Count (B) Flag Packet count Traffic-Class-specific (T) Flag Traffic-class-scoped Origin Timestamp Format (OTF) Truncated IEEE 1588v2 A simple implementation may assume that external configuration will ensure that both ends of the communication are using the default values for these parameters. Implementations are, however, strongly advised to validate the values of these parameters in received messages so that configuration inconsistencies can be detected and reported. Frost & Bryant Expires January 20, 2012 [Page 3] Internet-Draft MPLS-TP Loss and Delay Measurement July 2011 LM message rates (and test message rates, when inferred LM is used) should be configurable by the network operator on a per-channel basis. The following intervals should be supported: Message Type Supported Intervals -------------- ------------------------------------------------------ LM Message 100 milliseconds, 1 second, 10 seconds, 1 minute, 10 minutes Test Message 10 milliseconds, 100 milliseconds, 1 second, 10 seconds, 1 minute 4. Packet Delay Measurement (DM) Profile When a DM session is externally configured, the values of several protocol parameters can be fixed in advance at the endpoints involved in the session, so that negotiation of these parameters is not required. These parameters, and their default values as specified by this profile, are as follows: Parameter Default Value ------------------------------------------ -------------------------- Query control code In-band response requested Querier Timestamp Format (QTF) Truncated IEEE 1588v2 Responder Timestamp Format (RTF) Truncated IEEE 1588v2 Responder's Preferred Timestamp Format Truncated IEEE 1588v2 (RPTF) This profile uses the MPLS Delay Measurement (DM) Channel Type in the Associated Channel Header (ACH). A simple implementation may assume that external configuration will ensure that both ends of the communication are using the default values for these parameters. Implementations are, however, strongly advised to validate the values of these parameters in received messages so that configuration inconsistencies can be detected and reported. DM message rates should be configurable by the network operator on a per-channel basis. The following message intervals should be supported: 1 second, 10 seconds, 1 minute, 10 minutes. 5. Security Considerations This document delineates a subset of the procedures specified in [I-D.ietf-mpls-loss-delay], and as such introduces no new security considerations in itself. The security considerations discussed in Frost & Bryant Expires January 20, 2012 [Page 4] Internet-Draft MPLS-TP Loss and Delay Measurement July 2011 [I-D.ietf-mpls-loss-delay] apply also to the profile presented in this document. General considerations for MPLS-TP network security can be found in [I-D.ietf-mpls-tp-security-framework]. 6. IANA Considerations This document introduces no new IANA considerations. 7. References 7.1. Normative References [I-D.ietf-mpls-loss-delay] Frost, D. and S. Bryant, "Packet Loss and Delay Measurement for MPLS Networks", draft-ietf-mpls-loss-delay-03 (work in progress), June 2011. [RFC5586] Bocci, M., Vigoureux, M., and S. Bryant, "MPLS Generic Associated Channel", RFC 5586, June 2009. [RFC5860] Vigoureux, M., Ward, D., and M. Betts, "Requirements for Operations, Administration, and Maintenance (OAM) in MPLS Transport Networks", RFC 5860, May 2010. 7.2. Informative References [I-D.ietf-mpls-tp-security-framework] Fang, L., Niven-Jenkins, B., and S. Mansfield, "MPLS-TP Security Framework", draft-ietf-mpls-tp-security-framework-01 (work in progress), May 2011. [RFC5921] Bocci, M., Bryant, S., Frost, D., Levrau, L., and L. Berger, "A Framework for MPLS in Transport Networks", RFC 5921, July 2010. [RFC5950] Mansfield, S., Gray, E., and K. Lam, "Network Management Framework for MPLS-based Transport Networks", RFC 5950, September 2010. Frost & Bryant Expires January 20, 2012 [Page 5] Internet-Draft MPLS-TP Loss and Delay Measurement July 2011 Authors' Addresses Dan Frost (editor) Cisco Systems Email: danfrost@cisco.com Stewart Bryant (editor) Cisco Systems Email: stbryant@cisco.com Frost & Bryant Expires January 20, 2012 [Page 6]