Open Pluggable Edge Services A. Barbir Internet-Draft Nortel Networks Expires: April 26, 2004 A. Rousskov The Measurement Factory October 27, 2003 OPES Treatment of IAB Considerations draft-ietf-opes-iab-03 Status of this Memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http:// www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. This Internet-Draft will expire on April 26, 2004. Copyright Notice Copyright (C) The Internet Society (2003). All Rights Reserved. Abstract IETF Internet Architecture Board (IAB) expressed nine architecture-level considerations for the Open Pluggable Edge Services (OPES) framework. This document describes how OPES addresses those considerations. Barbir & Rousskov Expires April 26, 2004 [Page 1] Internet-Draft OPES Treatment of IAB Considerations October 2003 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. Consideration (2.1) 'One-party consent' . . . . . . . . . . . 5 4. Consideration (2.2) 'IP-layer communications' . . . . . . . . 6 5. Notification Considerations . . . . . . . . . . . . . . . . . 8 5.1 Notification versus trace . . . . . . . . . . . . . . . . . . 8 5.2 An example of an OPES trace for HTTP . . . . . . . . . . . . . 9 5.3 Consideration (3.1) 'Notification' . . . . . . . . . . . . . . 10 5.4 Consideration (3.2) 'Notification' . . . . . . . . . . . . . . 12 6. Consideration (3.3) 'Non-blocking' . . . . . . . . . . . . . . 13 7. Consideration (4.1) 'URI resolution' . . . . . . . . . . . . . 14 8. Consideration (4.2) 'Reference validity' . . . . . . . . . . . 15 9. Consideration (4.3) 'Addressing extensions' . . . . . . . . . 16 10. Consideration (5.1) 'Privacy' . . . . . . . . . . . . . . . . 17 11. Consideration 'Encryption' . . . . . . . . . . . . . . . . . . 18 12. Security Considerations . . . . . . . . . . . . . . . . . . . 19 13. Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . 20 A. Change Log . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Normative References . . . . . . . . . . . . . . . . . . . . . 23 Informative References . . . . . . . . . . . . . . . . . . . . 24 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 24 Intellectual Property and Copyright Statements . . . . . . . . 25 Barbir & Rousskov Expires April 26, 2004 [Page 2] Internet-Draft OPES Treatment of IAB Considerations October 2003 1. Introduction The Open Pluggable Edge Services (OPES) architecture [I-D.ietf-opes-architecture], enables cooperative application services (OPES services) between a data provider, a data consumer, and zero or more OPES processors. The application services under consideration analyze and possibly transform application-level messages exchanged between the data provider and the data consumer. In the process of chartering OPES, the IAB made recommendations on issues that OPES solutions should be required to address. These recommendations were formulated in the form of a specific IAB considerations document [RFC3238]. In that document, IAB emphasized that its considerations did not recommend specific solutions and did not mandate specific functional requirements. Addressing an IAB consideration may involve showing appropriate protocol mechanisms or demonstrating that the issue does not apply. Addressing a consideration does not necessarily mean supporting technology implied by the consideration wording. The primary goal of this document is to show that all IAB recommendations are addressed by OPES, to the extent that those considerations can be addressed by an IETF working group. The limitations of OPES working group to address certain aspects of IAB considerations are also explicitly documented. There are nine IAB considerations [RFC3238] that OPES has to address. In the core of this document are the corresponding nine "Consideration" sections. For each IAB consideration, its section contains general discussion as well as references to specific OPES mechanisms relevant to the consideration. Barbir & Rousskov Expires April 26, 2004 [Page 3] Internet-Draft OPES Treatment of IAB Considerations October 2003 2. Terminology This document does not introduce any new terminology but uses terminology from other OPES documents it quotes. Barbir & Rousskov Expires April 26, 2004 [Page 4] Internet-Draft OPES Treatment of IAB Considerations October 2003 3. Consideration (2.1) 'One-party consent' "An OPES framework standardized in the IETF must require that the use of any OPES service be explicitly authorized by one of the application-layer end-hosts (that is, either the content provider or the client)."[RFC3238] OPES architecture requires that "OPES processors MUST be consented to by either the data consumer or data provider application" [I-D.ietf-opes-architecture]. This requirement alone cannot prevent consent-less introduction of OPES processors. In [I-D.ietf-opes-end-comm], the OPES architecture enables concerned parties to detect unwanted OPES processors by examining OPES traces. The use of traces in OPES is mandatory. A tracing mechanism on its own cannot detect processors that are in violation of OPES specifications. Examples include OPES processors operating in stealth mode. However, the OPES architecture allows the use of content signature to verify the authenticity of performed adaptations. Content signatures is a strong but expensive mechanism that can detect any modifications of signed content provided that the content provider is willing to sign the data and that the client is willing to either check the signature or relay received content to the content provider for signature verification. OPES adaptations may include copying and other forms of non-modifying access to content. These kinds of adaptations cannot be detected by the above mentioned mechanisms. Thus, "passive" OPES processors can operate on the content without the data consumer or provider consent. If presence of such processors is a concern, then content encryption can be used. A passive processor is no different from a proxy or an intermediary operating outside of OPES framework. No OPES mechanism (existing or foreseeable) can prevent non-modifying access to content. Barbir & Rousskov Expires April 26, 2004 [Page 5] Internet-Draft OPES Treatment of IAB Considerations October 2003 4. Consideration (2.2) 'IP-layer communications' "For an OPES framework standardized in the IETF, the OPES intermediary must be explicitly addressed at the IP layer by the end user."[RFC3238] The OPES architecture requires that "OPES processors MUST be addressable at the IP layer by the end user (data consumer application)" [I-D.ietf-opes-architecture]. The IAB and the architecture documents mention an important exception: addressing the first OPES processor in a chain of processors is sufficient. That is, a chain of OPES processors is viewed as a single OPES "system" at the address of the first chain element. The notion of a chain is not strictly defined by IAB. For the purpose of addressing this consideration, a group of OPES processors working on a given application transaction is considered. Such a group would necessarily form a single processing chain, with a single "exit" OPES processor (i.e., the processor that adapted the given message last). The OPES architecture essentially requires that last OPES processor to be explicitly addressable at the IP layer by the data consumer application. The chain formation, including its exit point may depend on an application message and other dynamic factors such as time of the day or system load. Furthermore, if OPES processing is an internal processing step at a data consumer or a data provider application side, then the last OPES processor may reside in a private address space and may not be explicitly addressable from the outside. In such situations, the processing side must designate an addressable point on the same processing chain. That designated point may not be, strictly speaking, an OPES processor, but it will suffice as such as far as IAB considerations are concerned -- the data consumer application will be able to address it explicitly at the IP layer and it will represent the OPES processing chain to the outside world. Designating an addressable processing point avoids the conflict between narrow interpretation of the IAB consideration and real system designs. It is irrational to expect a content provider to provide access to internal hosts participating in content generation, whether OPES processors are involved or not. Moreover, providing such access would serve little practical purpose because internal OPES processors are not likely to be able to answer any data consumer queries, being completely out of content generation context. For example, an OPES processor adding customer-specific information to XML pages may not understand or be aware of any final HTML content that the data consumer application receives and may not be able to map end user request to any internal user identification. Since OPES Barbir & Rousskov Expires April 26, 2004 [Page 6] Internet-Draft OPES Treatment of IAB Considerations October 2003 requires the end of the message processing chain to be addressable, the conflict does not exist. OPES places no requirements on the internal architecture of data producer systems while requiring the entire OPES-related content production "system" to be addressable at the IP layer. Private Domain | Public Domain | Private Domain | | +--------------+ | +-------------+ +--------+ | Data | | | OPES System | |Data | | Consumer |<--- network -->| with public |<---->|Provider| | Application | | | IP address | |App | +--------------+ | +-------------+ +--------+ | | | | Figure 1 Barbir & Rousskov Expires April 26, 2004 [Page 7] Internet-Draft OPES Treatment of IAB Considerations October 2003 5. Notification Considerations This section discusses how OPES framework addresses IAB Notification considerations 3.1 and 3.2. 5.1 Notification versus trace Before specific considerations are discussed, the relationship between IAB notifications and OPES tracing has to be explained. OPES framework concentrates on tracing rather than notification. The OPES Communications specification [I-D.ietf-opes-end-comm] defines "OPES trace" as information about OPES adaptations that is embedded in an application message. Thus, OPES trace follows the application message it traces. The trace is for the recipient of the application message. Traces are implemented as extensions of application protocols being adapted and traced. As opposed to an OPES trace, provider notification (as implied by IAB) notifies the sender of the application message rather than the recipient. Thus, notifications propagate in the opposite direction of traces. Supporting notifications directly would require a new protocol. Figure 2 illustrates the differences between a trace and notification from a single application message point of view. sender --[message A]--> OPES --[message A']--> recipient ^ V [with trace] | | +-<-- [notification] ---+ Figure 2 Since notifications cannot be piggy-backed to application messages, they create new messages and may double the number of messages the sender has to process. The number of messages that need to be proceed is larger if several intermediaries on the message path generate notifications). Associating notifications with application messages may require duplicating application message information in notifications and may require maintaining a sender state until notification is received. These actions increase the performance overhead of notifications. The level of available details in notifications versus provider interest in supporting notification is another concern. Experience shows that content providers often require very detailed information about user actions to be interested in notifications at all. For example, Hit Metering protocol [RFC2227] has been designed to supply content providers with proxy cache hit counts, in an effort to reduce cache busting behavior which was caused by content providers desire to get accurate site "access counts". However, the Hit Metering Barbir & Rousskov Expires April 26, 2004 [Page 8] Internet-Draft OPES Treatment of IAB Considerations October 2003 protocol is currently not widely deployed because the protocol does not supply content providers with information such as client IP addresses, browser versions, or cookies. Hit Metering experience is relevant because Hit Metering protocol was designed to do for HTTP caching intermediaries what OPES notifications are meant to do for OPES intermediaries. Performance requirements call for state reduction via aggregation of notifications while provider preferences call for state preservation or duplication. Achieving the right balance when two sides belong to different organizations and have different optimization priorities may be impossible. Thus, instead of explicitly supporting notifications at the protocol level, OPES concentrates on tracing facilities. In essence, OPES supports notifications indirectly, using tracing facilities. In other words, the IAB choice of "Notification" label is interpreted as "Notification assistance" (i.e. making notifications meaningful) and is not interpreted as a "Notification protocol". The above concerns call for making notification optional. The OPES architecture allows for an efficient and meaningful notification protocol to be implemented in certain OPES environments. For specific examples, see the "Optional Notification" section in [I-D.ietf-opes-end-comm]. 5.2 An example of an OPES trace for HTTP The example below illustrates adaptations done to HTTP request at an OPES processor operated by the client ISP. Both original (as sent by an end user) and adapted (as received by the origin web server) requests are shown. The primary adaptation is the modification of HTTP "Accept" header. The secondary adaptation is the addition of an "OPES-Via" HTTP extension header [I-D.ietf-opes-http] (XXX: but it is not OPES-Via, it is OPES-System for now; OPES-Via is probably better for a few reasons though). GET /pub/WWW/ HTTP/1.1 Host: www.w3.org Accept: text/plain Figure 3 ... may be adapted by an ISP OPES system to become: GET /pub/WWW/ HTTP/1.1 Host: www.w3.org Accept: text/plain; q=0.5, text/html, text/x-dvi; q=0.8 Barbir & Rousskov Expires April 26, 2004 [Page 9] Internet-Draft OPES Treatment of IAB Considerations October 2003 OPES-Via: http://www.isp-example.com/opes/?client-hash=1234567 Figure 4 The example below illustrates adaptations done to HTTP response at an OPES intermediary operated by a Content Distribution Network (CDN). Both original (as sent by the origin web server) and adapted (as received by the end user) responses are shown. The primary adaptation is the conversion from HTML markup to plain text. The secondary adaptation is the addition of an "OPES-Via" HTTP extension header. HTTP/1.1 200 OK Content-Length: 12345 Content-Encoding: text/html

Available Documenta... Figure 5 ... may be adapted by a CDN OPES system to become: HTTP/1.1 200 OK Content-Length: 2345 Content-Encoding: text/plain OPES-Via: http://www.cdn-example.com/opes/?site=7654321&service=h2t AVAILABLE DOCUMENTA... Figure 6 In the above examples, "OPES-Via" header values contain URLs that may point to OPES-specific documents such as description of the OPES operator and its privacy policy. Those documents may be parameterized to allow for customizations specific to the transaction being traced (e.g., client or even transaction identifier may be used to provide more information about performed adaptations). Traced OPES URLs may be later used to request OPES bypass [I-D.ietf-opes-end-comm]. 5.3 Consideration (3.1) 'Notification' "The overall OPES framework needs to assist content providers in detecting and responding to client-centric actions by OPES intermediaries that are deemed inappropriate by the content provider."[RFC3238] OPES tracing mechanisms assist content providers in detecting client-centric actions by OPES intermediaries. Specifically, a Barbir & Rousskov Expires April 26, 2004 [Page 10] Internet-Draft OPES Treatment of IAB Considerations October 2003 compliant OPES intermediary or system notifies a content provider of its presence by including its tracing information in the application protocol requests. An OPES system MUST leave its trace [I-D.ietf-opes-end-comm]. Detection assistance has its limitations. Some OPES intermediaries may work exclusively on responses and may not have a chance to trace the request. Moreover, some application protocols may not have explicit requests (e.g., a content push service). OPES tracing mechanisms assist content providers in responding to client-centric actions by OPES intermediaries. Specifically, OPES traces MUST include identification of OPES systems and SHOULD include a list of adaptation actions performed on provider's content. This tracing information may be included in the application request. Usually, however, this information will be included in the application response, an adapted version of which does not reach the content provider. If OPES end points cooperate, then notification can be assisted with traces. Content providers that suspect or experience difficulties can do any of the following: o Check whether requests they receive pass through OPES intermediaries. Presence of OPES tracing info will determine that. This check is only possible for request/response protocols. For other protocols (e.g., broadcast or push), the provider would have to assume that OPES intermediaries are involved until proven otherwise. o If OPES intermediaries are suspected, request OPES traces from potentially affected user(s). The trace will be a part of the application message received by the user software. If involved parties cooperate, the provider(s) may have access to all the needed information. Certainly, lack of cooperation may hinder access to tracing information. To encourage cooperation, data providers might be able to deny service to uncooperative users. o Some traces may indicate that more information is available by accessing certain resources on the specified OPES intermediary or elsewhere. Content providers may query for more information in this case. o If everything else fails, providers can enforce no-adaptation policy using appropriate OPES bypass mechanisms and/or end-to-end encryption mechanisms. OPES detection and response assistance is limited to application protocols with support for tracing extensions. For example, HTTP [RFC2616] has such support while DNS over UDP does not. Barbir & Rousskov Expires April 26, 2004 [Page 11] Internet-Draft OPES Treatment of IAB Considerations October 2003 5.4 Consideration (3.2) 'Notification' "The overall OPES framework should assist end users in detecting the behavior of OPES intermediaries, potentially allowing them to identify imperfect or compromised intermediaries."[RFC3238] OPES tracing mechanisms assist end users in detecting OPES intermediaries. Specifically, a compliant OPES intermediary or system notifies an end user of its presence by including its tracing information in the application protocol messages sent to the client. An OPES system MUST leave its trace [I-D.ietf-opes-end-comm]. However, detection assistance has its limitations. Some OPES systems may work exclusively on requests and may not have a chance to trace the response. Moreover, some application protocols may not have explicit responses (e.g., event logging service). OPES detection assistance is limited to application protocols with support for tracing extensions. For example, HTTP [RFC2616] has such support while DNS over UDP does not. Barbir & Rousskov Expires April 26, 2004 [Page 12] Internet-Draft OPES Treatment of IAB Considerations October 2003 6. Consideration (3.3) 'Non-blocking' "If there exists a "non-OPES" version of content available from the content provider, the OPES architecture must not prevent users from retrieving this "non-OPES" version from the content provider."[RFC3238] "OPES entities MUST support a bypass feature" [I-D.ietf-opes-end-comm]. If an application message includes bypass instructions and an OPES intermediary is not configured to ignore them, the matching OPES intermediary will not process the message. An OPES intermediary may be configured to ignore bypass instructions only if no non-OPES version of content is available. Bypass may generate content errors since some OPES services may be essential but may not be configured as such. Bypass support has limitations similar to the two notification-related considerations above. Barbir & Rousskov Expires April 26, 2004 [Page 13] Internet-Draft OPES Treatment of IAB Considerations October 2003 7. Consideration (4.1) 'URI resolution' "OPES documentation must be clear in describing these services as being applied to the result of URI resolution, not as URI resolution itself."[RFC3238] "OPES Scenarios and Use Cases" specification [I-D.ietf-opes-scenarios] documents content adaptations that are in scope of the OPES framework. Scenarios include adaptations of requests and responses. These adaptations do not include URI resolution adaptations. In some environments, it is technically possible to adapt URIs (and other kinds of identifiers or addresses) using documented OPES mechanisms. The OPES framework cannot effectively prohibit any specific adaptations. Barbir & Rousskov Expires April 26, 2004 [Page 14] Internet-Draft OPES Treatment of IAB Considerations October 2003 8. Consideration (4.2) 'Reference validity' "All proposed services must define their impact on inter- and intra-document reference validity."[RFC3238] The OPES framework does not propose adaptation services. However, OPES tracing requirements include identification of OPES intermediaries and services (for details, see "Notification" consideration sections in this document). It is required that provided identification can be used to locate information about the OPES intermediaries, including the description of impact on reference validity [I-D.ietf-opes-end-comm] (XXX: check tracing draft for this requirement). Barbir & Rousskov Expires April 26, 2004 [Page 15] Internet-Draft OPES Treatment of IAB Considerations October 2003 9. Consideration (4.3) 'Addressing extensions' "Any services that cannot be achieved while respecting the above two considerations may be reviewed as potential requirements for Internet application addressing architecture extensions, but must not be undertaken as ad hoc fixes."[RFC3238] OPES framework does not contain ad hoc fixes. This document in combination with and other OPES documents should be sufficient to inform service creators of IAB considerations. If a service does URI resolution or silently affects document reference validity, the authors are requested to review service impact on Internet application addressing architecture and work within IETF on potential extension requirements. Such actions would be outside of the current OPES framework. Barbir & Rousskov Expires April 26, 2004 [Page 16] Internet-Draft OPES Treatment of IAB Considerations October 2003 10. Consideration (5.1) 'Privacy' "The overall OPES framework must provide for mechanisms for end users to determine the privacy policies of OPES intermediaries."[RFC3238] OPES tracing mechanisms allow end users to identify OPES intermediaries (for details, see "Notification" consideration sections in this document). It is required that provided identification can be used to locate information about the OPES intermediaries, including their privacy policies. The term "privacy policy" is not defined in this context (by IAB or OPES working group). OPES tracing mechanisms allow end users and content providers to identify an OPES system and/or intermediaries. It is believed that once an OPES system is identified, it would be possible to locate relevant information about that system, including information relevant to requesters perception of privacy policy or reference validity. Barbir & Rousskov Expires April 26, 2004 [Page 17] Internet-Draft OPES Treatment of IAB Considerations October 2003 11. Consideration 'Encryption' "If OPES is chartered, the OPES working group will also have to explicitly decide and document whether the OPES architecture must be compatible with the use of end-to-end encryption by one or more ends of an OPES-involved session. If OPES was compatible with end-to-end encryption, this would effectively ensure that OPES boxes would be restricted to ones that are known, trusted, explicitly addressed at the IP layer, and authorized (by the provision of decryption keys) by at least one of the ends."[RFC3238] The above quoted requirement was not explicitly listed as on of the IAB considerations, but still needs to be addressed. The context of the quote implies that the phrase "end-to-end encryption" refers to encryption along all links of the end-to-end path, with the OPES intermediaries as encrypting/decrypting participants or hops (e.g., encryption between the provider and the OPES intermediaries, and between the OPES intermediaries and the client). Since OPES processors are regular hops on the application protocol path, OPES architecture allows for such encryption, provided the application protocol being adapted supports it. Hop-by-hop encryption would do little good for the overall application message path protection if callout services have to receive unencrypted content. To allow for complete link encryption coverage, OPES callout protocol (OCP) supports encryption of OCP connections between an OPES processor and a callout server via optional (negotiated) transport encryption mechanisms [I-D.ietf-opes-ocp-core]. For example, TLS encryption [RFC2817] can be used among HTTP hops (some of which could be OPES processors) and between each OPES processor and a callout server. Barbir & Rousskov Expires April 26, 2004 [Page 18] Internet-Draft OPES Treatment of IAB Considerations October 2003 12. Security Considerations This document does not define any mechanisms that may be subject to security considerations. Security considerations for OPES mechanisms are discussed in corresponding OPES framework documents. Barbir & Rousskov Expires April 26, 2004 [Page 19] Internet-Draft OPES Treatment of IAB Considerations October 2003 13. Compliance This document may be perceived as a proof of OPES compliance with IAB implied recommendations. However, this document does not introduce any compliance subjects. Compliance of OPES implementations is defined in other OPES documents discussed above. Barbir & Rousskov Expires April 26, 2004 [Page 20] Internet-Draft OPES Treatment of IAB Considerations October 2003 Appendix A. Change Log Internal WG revision control ID: $Id: iab-cons.xml,v 1.26 2003/10/27 11:40:33 rousskov Exp $ 2003/10/24 * Addressed hop-by-hop encryption concerns mentioned in the IAB draft. * Polished IP addressing figure. * Removed resolved XXXs. 2003/10/01 * Polishing (Abbie Barbir). 2003/09/23 * Added a reference to Optional Notification section of the ietf-opes-end-comm draft. * Fixed "Consideration (3.3) Non-blocking" section position. head-sid15 * Added a figure showing a chain of internal OPES intermediaries behind a public IP address. Needs more work. More cases? head-sid14 * Rewrote the Introduction to the IP addressing consideration. Do NOT explain how IAB considerations, if interpreted literary, do not satisfy important real-world constraints. Instead, use the "chain of OPES intermediaries" exception introduced by IAB itself to show that OPES architecture addresses IAB concerns as long as the "chain" is defined/formed for a given application message rather than being a statically configured application routing table of sorts. IAB had to add the "chain" exception to cover one of the most obvious real-world usage scenario. We use the very same exception to cover all usage scenarios we care about. * Polished text explaining the differences between tracing and notification mechanisms. * Added examples of OPES/HTTP traces. Barbir & Rousskov Expires April 26, 2004 [Page 21] Internet-Draft OPES Treatment of IAB Considerations October 2003 * Be careful not to imply that all OPES intermediaries must obey bypass instructions. Bypass should be ignored when no non-OPES version of the content exists. Ideally, this may need to be polished further -- if there is no non-OPES version of the content, most IAB considerations probably do not apply because there is really no adaptation, only creation of content (and we should not restrict content creation). * Added references to OPES "Communications" draft [I-D.ietf-opes-end-comm]. head-sid9 * Polished to meet new xml2rfc strict requirements. head-sid8 * Added unpolished meat for all nine considerations. * Added Abbie Barbir as an author. head-sid7 * Initial revision Barbir & Rousskov Expires April 26, 2004 [Page 22] Internet-Draft OPES Treatment of IAB Considerations October 2003 Normative References [I-D.ietf-opes-end-comm] Barbir, A., "OPES processor and end points communications", draft-ietf-opes-end-comm-04 (work in progress), October 2003. [I-D.ietf-opes-architecture] Barbir, A., "An Architecture for Open Pluggable Edge Services (OPES)", draft-ietf-opes-architecture-04 (work in progress), December 2002. [I-D.ietf-opes-scenarios] Barbir, A., "OPES Use Cases and Deployment Scenarios", draft-ietf-opes-scenarios-01 (work in progress), August 2002. [RFC3238] Floyd, S. and L. Daigle, "IAB Architectural and Policy Considerations for Open Pluggable Edge Services", RFC 3238, January 2002. Barbir & Rousskov Expires April 26, 2004 [Page 23] Internet-Draft OPES Treatment of IAB Considerations October 2003 Informative References [RFC2227] Mogul, J. and P. Leach, "Simple Hit-Metering and Usage-Limiting for HTTP", RFC 2227, October 1997. [RFC2616] Fielding, R., Gettys, J., Mogul, J., Nielsen, H., Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999. [RFC2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within HTTP/ 1.1", RFC 2817, May 2000. [I-D.ietf-opes-http] Rousskov, A. and M. Stecher, "HTTP adaptation with OPES", draft-ietf-opes-http-00 (work in progress), August 2003. [I-D.ietf-opes-ocp-core] Rousskov, A., "OPES Callout Protocol Core", draft-ietf-opes-ocp-core-01 (work in progress), August 2003. Authors' Addresses Abbie Barbir Nortel Networks 3500 Carling Avenue Nepean, Ontario CA Phone: +1 613 763 5229 EMail: abbieb@nortelnetworks.com Alex Rousskov The Measurement Factory EMail: rousskov@measurement-factory.com URI: http://www.measurement-factory.com/ Barbir & Rousskov Expires April 26, 2004 [Page 24] Internet-Draft OPES Treatment of IAB Considerations October 2003 Intellectual Property Statement The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director. Full Copyright Statement Copyright (C) The Internet Society (2003). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assignees. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION Barbir & Rousskov Expires April 26, 2004 [Page 25] Internet-Draft OPES Treatment of IAB Considerations October 2003 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Acknowledgment Funding for the RFC Editor function is currently provided by the Internet Society. Barbir & Rousskov Expires April 26, 2004 [Page 26]