

Rapid Synchronisation of RTP flows draft-perkins-avt-rapid-rtp-sync-00.txt

Colin Perkins

Synchronisation of RTP flows

- RTP senders transmit periodic compound RTCP packets
 - The SR packet in the compound maps the media clock to a common NTP-format clock
 - The SDES packet in the compound contains a CNAME item, used to associate flows across RTP sessions
- Receivers can synchronise flows once they have received an RTCP packet for each

How fast does RTP synchronise flows?

- Unicast flows:
 - RFC 3550 allows you to send the initial RTCP packet immediately a unicast session is joined
 - In the absence of packet loss, the receiver can synchronise flows immediately
 - Any NAT traversal and/or security keying will have concluded before the first RTCP packet is sent
 - The first RTCP packet shouldn't have a higher loss probability than any other packet

How fast does RTP synchronise flows?

- SSM flows:
 - Synchronisation delay depends on number of receivers and session bandwidth:

```
Session | Number of receivers (single sender assumed):
                                     100
                                           1000 10000
Bandwidth
  8 kbps | 2.73 4.10 5.47 5.47 5.47 5.47
 16 kbps | 2.50 2.50 2.73 2.73 2.73 2.73
 32 kbps | 2.50 2.50 2.50 2.50 2.50 2.50 2.50
 64 kbps | 2.50 2.50 2.50
                         2.50 2.50 2.50
128 kbps | 1.41 1.41 1.41
                         1.41 1.41 1.41 1.41 1.41
256 kbps | 0.70 0.07 0.07 0.07 0.07 0.07
                                           0.07 0.07
512 kbps | 0.35  0.35  0.35  0.35  0.35
                                          0.35 0.35
  1 Mbps | 0.18  0.18  0.18  0.18  0.18  0.18
                                                0.18
                                                       Less than one frame
  2 Mbps | 0.09 0.09 0.09 0.09 0.09 0.09 0.09
  4 Mbps | 0.04 0.04 0.04 0.04 0.04 0.04 0.04
                               Synchronisation delay (seconds)
```

Faster synchronisation: SSM sessions

- RTCP timing rules were designed to avoid congestion under flash crowds
 - This can't happen on the forward path of an SSM session (it can on the unicast reverse path)
 - Implies SSM senders don't need the delay before sending their initial RTCP
 - Propose updating RFC 3550 to that effect; allowing immediate synchronisation between flows in SSM sessions
 - Doesn't need to be signalled; will not affect un-updated receivers, except to speed up synchronisation

Faster synchronisation: packet loss

- Loss of initial RTCP delays synchronisation for one reporting interval
 - Also an issue for late joiners, video switching, etc.
- Propose: new AVPF transport layer feedback message "send me an RTCP SR" to recover

Summary

- RTCP SR-based synchronisation works and is widely implemented
- Two simple extensions speed it up for SSM sessions or if the initial RTCP packet is lost
 - Backwards compatible, with graceful fallback to slower mechanisms