The -avt-rtcp-xr-* drafts

draft-ietf-avt-rtcp-xr-burst-gap-discard-00, draft-ietf-avt-rtcp-xr-burst-gap-loss-00, draft-ietf-avt-rtcp-xr-concsec-00, draft-ietf-avt-rtcp-xr-delay-00, draft-ietf-avt-rtcp-xr-discard-00, draft-ietf-avt-rtcp-xr-jb-00, draft-ietf-avt-rtcp-xr-loss-conceal-00, draft-ietf-avt-rtcp-xr-meas-identity-00, draft-ietf-avt-rtcp-xr-pdv-00, draft-ietf-avt-rtcp-xr-postrepair-loss-00, draft-ietf-avt-rtcp-xr-siglevel-00

IETF73, Minneapolis 16-21 Nov 2008

Alan Clark

Geoff Hunt

Why are there <u>twelve</u> drafts?

- The result of "re-architecting" RTCP-HR
 - Metrics are largely the same as those in RTCP-HR
- A single block per draft
- A very few closely-related metrics per block
- Designed for re-use across applications
- Blocks for
 - Transport (loss, delay variation)
 - Terminal behaviour (de-jitter buffer)
 - Quality of user experience (VoIP, and starting on video)
- Applications are not expected to implement all metrics
- Blocks can report cumulative or interval metrics

The measurement identity block (1)

- It must be possible to record the stream segment to which a metrics block refers
- For multiple small blocks of metrics this could be a large overhead
- Solution is to have a mandatory block with identifier information, to which metrics blocks must refer
- Might need >1 identifier block for compound packets
 - e.g. where translator sends its own metrics and forwards metrics
- Defined in draft-ietf-avt-rtcp-xr-meas-identity-00
- Use case analysis:
 - Is fwd (count of times forwarded) useful?
 - Some translators won't unpack the RTCP so can't increment
 - Ref to RFC5117 needed
 - Could QoE metrics be forwarded across certain RTP mixers?

The measurement identity block (2)

```
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5
       |0| tag | fwd | block length = 7
  BT=NMI
SSRC of stream source
sub-identifier
         extended first sequence number (cumulative)
extended first sequence number of interval
extended last sequence number
      Measurement Duration (Cumulative) (ms)
     Measurement Duration (Interval) (ms)
```

Use of the measurement identity block (3)

The metrics blocks

- Three broad classes of metrics in the eleven blocks:
 - Transport metrics
 - Loss, delay variation
 - Relevant to all RTP applications
 - Transport-related mixer or end system metrics
 - Concealment, de-jitter buffer performance
 - Relevant to RTP applications with a de-jitter buffer
 - Quality of experience
 - Opinion scores, signal levels
 - Opinion scores relevant for applications which define them
 - Signal levels block applicable to audio, voice and video

Transport metrics (1)

- draft-ietf-avt-rtcp-xr-burst-gap-loss-00
 - When used with the RFC3550 cumulative loss metric, allows determination of
 - Mean and standard deviation of burst length
 - Number of bursts
 - Total burst duration
 - Mean packet loss rate in-burst
 - Question: Is assumption of RFC3550 justified?
 - Question: Will RTP stacks baulk at a 3550 RR block from a translator
 - If so, should define XR basic loss block
 - And draft refers to PCM and VAD
 - Need to clarify these relate only to the VoIP application

Transport metrics (2)

- draft-ietf-avt-rtcp-xr-pdv-00
 - PDV percentiles or ranges for one of the specified
 PDV algorithms, as RTCP HR
 - Need to add text on choice of algorithm
 - Need IANA policy for additional (13/16) algorithms
 - Probably "specification required"
- draft-ietf-avt-rtcp-xr-delay-00
 - Mean, minimum and maximum values of network
 RTD
 - Also reports end system delay if available
 - Could argue this is a terminal metric.

Transport-related terminal metrics (1)

- draft-ietf-avt-rtcp-xr-postrepair-loss-00
 - A simple count of packets still missing after repair procedures have been applied
 - Complements draft-ietf-avt-post-repair-rtcp-xr which gives a more detailed (RLE) view
 - RFC3550 provides metric for pre-repair loss
- draft-ietf-avt-rtcp-xr-discard-00
 - A simple count of packets discarded because they arrive too late or too early to be played out
- draft-ietf-avt-rtcp-xr-burst-gap-discard-00
 - When used with the simple discard block, allows determination of
 - Mean and standard deviation of burst length
 - Number of bursts
 - Total burst duration
 - Mean packet loss rate in-burst

Transport-related terminal metrics (2)

- draft-ietf-avt-rtcp-xr-loss-conceal-00
 - Duration of "concealment" due to packet loss
 - Same for packet discard
 - Count of concealment episodes
- draft-ietf-avt-rtcp-xr-concsec-00
 - Reports seconds suffering any concealment
 - And seconds suffering "severe" concealment
- draft-ietf-avt-rtcp-xr-jb-00
 - De-jitter buffer type
 - De-jitter buffer current nominal delay
 - High- and low-water-marks

Signal & QoE Metric Blocks

- draft-ietf-avt-rtcp-xr-siglevel-00
 - Signal level being reported (signal, noise, echo, luminance, ...)
 - Channel number (e.g. stereo) within single RTP session
 - Measured or default value
 - Direction (Tx, Rx, internal, external), Scaling (dB, dBm, ...)
 - Value
- draft-ietf-avt-rtcp-xr-qoe-00
 - Channel number
 - Direction, Type (MOS-LQ, MOS-CQ, ...)
 - Calculation algorithm
 - Value
 - Needs IANA policy for additional (9/16) types and (252/256) algorithms
 - Probably "specification required"

Request...

- Please review
 - Against your use cases
 - For clarity
 - For usefulness of metrics
 - For ease and economy of implementation