Security Concerns With Tunneling draft-ietf-v6ops-tunnel-security-concerns-01

Dave Thaler Suresh Krishnan Jim Hoagland

Status

- Draft moved from v6ops to individual intarea
- Replaced a document only about Teredo
- Issues common to many or all tunneling mechanisms (VPNs, MIP, tunnel brokers, Teredo, 6to4, TURN, etc)
- Don't want to write a draft per protocol that says the same thing
 - Although some of the points are made in security considerations sections of existing protocols

Security Devices/Software

- Security devices/software often do packet inspection
- This draft takes no position on whether that is good or bad
- The fact is, it exists
 - and people use them and expect certain security properties
- If tunnels bypass them in some way, the tunnels are seen by such admins as a security/policy violation

Dealing With Security Devices

- Don't automatically tunnel to the Internet from a "managed" network
 - But may be hard to tell if network is "managed"
- Hosts should prefer native over such tunnels
 - If tunnel address space is well-known, add to Prefix Policy Table [RFC3484]
- Note: above don't apply when tunnel terminates within the managed network (e.g. ipsec gateway)
- One incentive for a managed network to provide native functionality is to reduce demand for transition tunnels
- If tunneling isn't an acceptable risk, admins may block tunneling

Identifying tunneled data packets

- How can a tunneled data packet be identified?
 - By protocol number (MIP, 6to4, ISATAP, etc.)
 - By port number (L2TP, some Teredo, etc.)
 - By tunnel server address
 - Pretend you're the destination for parsing purposes and see if it parses according to that protocol
 - But this may incorrectly identify other packets too

Tunnels May Bypass In/Egress Filtering

- Ingress/egress filters in routers being tunneled over won't see the inside IP addresses
- Could update routers to recognize tunnels (ugly)
- Tunnel servers can do filtering
- Can do checks in tunnel clients
 - If v4 addr embedded in v6 addr and supports peer-to-peer tunneling (e.g., 6to4, ISATAP, 6over4, etc), check if addrs correspond
 - If supports server-client tunneling, check if packet came from known server
 - Implies some secure server discovery mechanism (manual config, secure DNS resolution, whatever)

Increased Attack Surface Area

- If tunnel allows inbound access from public Internet, this may bypass a network "firewall"
 – Host-based "firewall" may still drop eventually
- If tunnel allows inbound access from a private network (e.g., a VPN), this still increases the amount of attackable code, but not as much
- Additional Recommendations:

Activate tunnels only when needed

Exposure of a NAT Hole

- NAT mappings kept stable means more discoverable
- External address/port may be easy to learn from client's inner address
 - Client's inner address may be discoverable in DNS, p2p systems, etc
- Tunnel packets are seen by more parties than native packets (e.g., due to longer paths)
- Learning the external address/port provides access to the entire inner address
 - Not just the application port that's communicating with the outside

Public Tunnels Widen Holes in Stateful Address Filters

- Some devices only allow inbound packets from destinations that have been sent packets
- Public tunnels bypass this and may eliminate need for attacker to spoof
 - Host-based "firewall" may still drop
- Recommendations:
 - Activate tunnels only when needed
 - Consider whether tunnel server should do stateful filtering (TURN allows this for instance)

Guessing Addresses

- Some tunneling protocols make guessing addresses easier than an address scan especially for IPv6 (for IPv4 not so much)
 - Well-known or popular address prefix?
 - Embed popular server address?
 - Some address bits are constant?

Profiling Targets

- If a tunnel protocol is available on only a subset of host platforms, this helps attacker know what/how to attack
- Similarly if a specific tunnel server is used primarily by a subset of platforms
- Similarly for the client port (range)
- Information about the NAT type (e.g, cone NAT) can be used to target attacks
- If looking at an address reveals any of this information, this profiling can be done passively
 - Aside: This applies to MAC-based address generation too, not just tunnels

Other areas

- Attacks on tunnel server configuration
- Source routing [RFC5095]