Elements of a Framework for PSAMP

Nick Duffield

AT&T Labs

nduffield@att.com

PSAMP BOF I ETF, Mar 2002

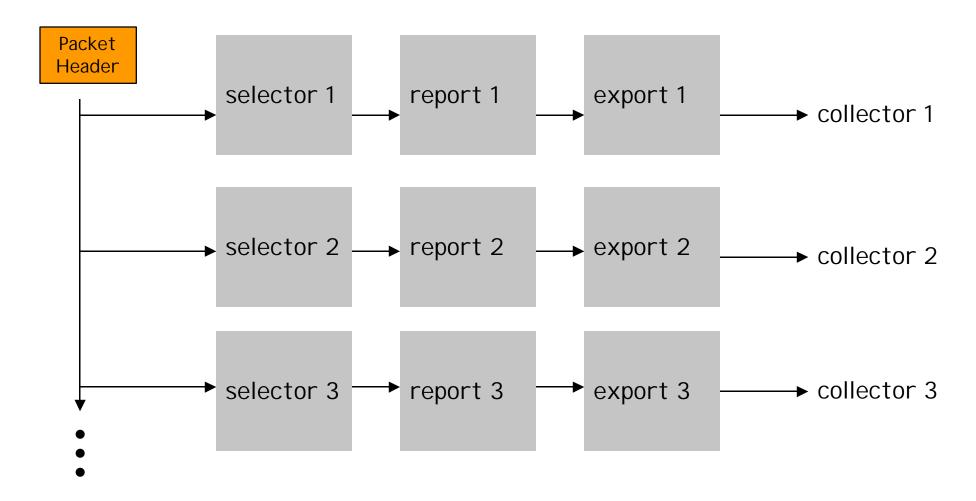
10

Aims and Focus

- ☐ Scope out requirements for PSAMP
- ☐ Position PSAMP as a supplier of packet measurements
 - → support applications, but they are done elsewhere
 - → main work for PSAMP is to define packet selection operations
- Need to get measurements to applications
 - → hence requirements for information model, export
 - → can use existing protocols (IPFIX the obvious candidate)
 - if PSAMP requirements match existing protocol capabilities

11

Elements


- Packet selection
- Parallel measurement
- ☐ Report content
- Self-defining report stream
- Remote and local export
- Robustness and information loss
- ☐ Configuration and management

Packet Selection Primitives

- Requirement: sufficiently rich set of packet selection operations
- Filter
 - → e.g., match/mask on source/destination prefix, port numbers, protocol, ... + tags to indicate the associated (sub)interface
- Sample
 - → e.g., 1 in N deterministic, random, or hash-based
- Combinations
 - → e.g., filter, then sample 1 in N
- Scope
 - → selection based on packet content: availability of router state not assumed
- Counters
 - → packets/bytes of full packet stream, and of selected packets
 - available for export, or polling
 - → used directly by applications, e.g., filter, then count for billing
 - → provide robustness w.r.t. information loss, e.g., from report stream

Parallel Measurement

□ Requirement: parallel configurable information flows

Resource Issues for Parallel Measurements

- Bounded processing resources per packet in router
- Packet may match several selectors
 - → e.g. coarse AS filter for billing, narrow subfilter for engineerng
- ☐ If packet matches too many selectors:
 - → not possible to fully report all resulting measurements
- Want graceful degradation from full reporting
 - → e.g., reflecting user priorities
- Information model design:
 - → should provide inherent robustness to such information loss

PSAMP BOF

Report Content

- Requirement: per packet reporting with sufficient detail
- ☐ Classes of information available for inclusion
 - → header fields, e.g., IP src/dst address, TCP/UDP ports, sizes, ToS, ...
 - → sub-IP level identifiers, e.g., i/o interfaces, MPLS label stack, ...
 - → router state, e.g, routing prefix, AS numbers, next hop, timestamps,...
 - → derived quantities, e.g., hash values
 - → packet/byte counters from originating selector

Self-defining Report Stream

- Requirement: transparent interpretation of data
- Include selector parameters for data interpretation
 - → e.g., sampling: use N to estimate actual traffic intensity
 - → e.g., filtering: what is possible universe of a given packet
 - → e.g.., hash function parameters: for ICMP traceback matching
- Attribution
 - → multiple selectors: which one(s) selected packet?
- Self-defining report stream
 - → include selector parameters, report format, ...
 - e.g. periodically, upon change, upon command, ...
 - → robust: data and its interpretation bound together
- Alternative that we don't like:
 - → collector keeps independent track of selection parameters
 - e.g. parameter management system, or by polling router
 - → joining data painful, especially synchronization
 - → multiple systems to interpret one data source = architectural hostage
- PSAMP BOF impact of undocumented changes, e.g., through CLI

Remote and Local Export

- ☐ Requirement:
 - → reporting to on-board and off-board applications
- ☐ Flexibility of different export destinations per selector
 - → different measurement applications, on different or same host
- Allow local export to on-board applications
 - → e.g. security applications
 - local export of hashes to ICMP traceback application
 - → e.g. multiple-packet measurement operations
 - interpacket delay jitter, flow formation
- Rate limiting export
 - → e.g. rate limit supply of measurements to transport

Robustness and Information Loss

- Requirement: robustness to information loss
- ☐ Causes of information loss:
 - → incomplete information if packet matches multiple selectors
 - → report loss in transit
 - → collector failure
- ☐ Inherent robustness in packet measurement model:
 - → small information content in a single measurement
 - relative to whole data stream
- Enhance robustness of measurement report stream:
 - → enable interpolation/correction for missing data
 - e.g., include packet/byte counters, sequence numbers
 - → decouples from and reduces need for reliability at other levels

Configuration and Management

- Motivation: enable reliable configuration by external applications
 - → (not as part of the export protocol!)
 - → of selector parameters, report format, export destination
 - → configuration of selectors in large number of device
- Applications:
 - → e.g., setup of large number of filters/counters for billing
 - → e.g., collector failure: redirection of export to secondary collector
 - → e.g., ongoing 1 in N baseline measurements to NOC
 - automated detection of DoS attack signature at NOC
 - · automated reconfiguration of router filter to focus on attack traffic
 - → e.g., dynamic selector reconfiguration by on-board applications
- Requirement: MIB for configuration parameters, SNMP to read/write
 - → secure, reliable, widespread experience, easy to build clients
 - → vendor neutral, standardized
 - → easy to reconfigure from on-board application