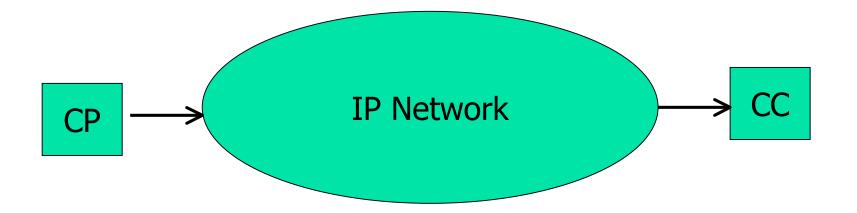
Security Issues in OPES -Threats and Risks

draft-ietf-opes-threats-00.txt

55th IETF

Atlanta, GA

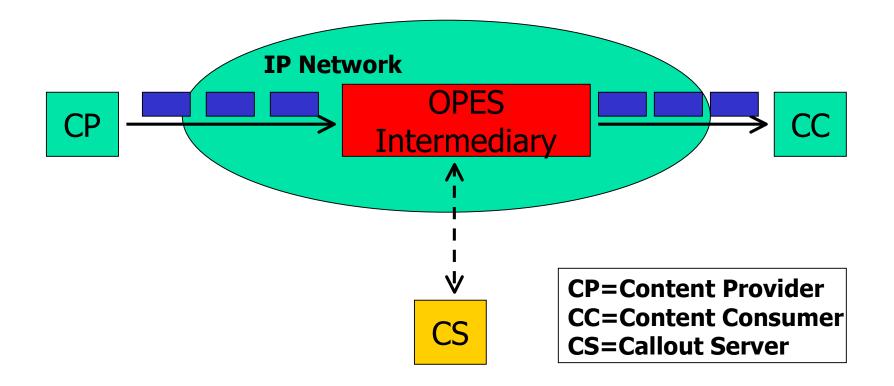
B. Srinivas NRC Boston, Burlington, MA


Outline

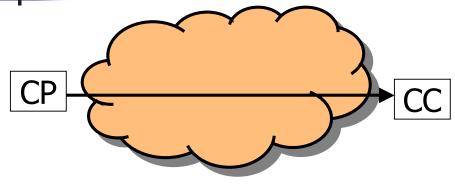
- Security issues in OPES
- Based on preliminary individual ID (draft-srinivas-opes-threats-00.txt)
- In-band threats
- Out-of-band threats

Traditional vs OPES (I)

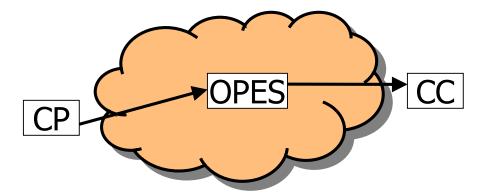
Traditional Network



CP=Content Provider CC=Content Consumer


Traditional vs OPES (II)

OPES Network



Security threats/risks in OPES

End-to-end Encryption

Hop-by-hop Encryption

- Data stream:
 - Content stream and
 - Signaling stream
- OPES introduces new site for exposure to threats by attacker
- Only hop-by-hop security, inherently less secure than endto-end techniques, can be used in OPES

OPES Security Threats Draft

- Discusses threats on data and control and their effects
- Threats discussed congruent with security considerations raised in RFC3238
- Security risks affect both CC and CP applications.
- Threats impact quality and integrity of data produced or consumed
- Threats introduced by existence of OPES processor and callout servers

OPES Security Threats

- Types of OPES Security Threats:
 - OPES in-band data flow threats
 - OPES Flow Network Level Threats
 - OPES Flow Application Level Threats
 - Out-of-band data or control information flow threats

OPES In-band Data Flow Threats

- Broadly classified into two types:
 - OPES Flow Network Level Threats
 - OPES Flow Application Level Threats
- Threats to trust in OPES network:
 - Insider caused by parties part of OPES system
 - Outsider caused by parties not part of OPES system
- Trust based on transitive trust between CP, OPES entities and CC

OPES Flow Network Level Threats – A Listing

- OPES/callout device spoofing
- Remote callout device spoofing
- Session hijacking

- DataConfidentiality
- Denial-of-Service (DoS)
- Threat to network robustness

OPES/Callout Device Spoofing

THREAT:

- Malicious node masquerades as OPES device, or
- Genuine OPES device, but malicious callout server

- Malicious node:
 - eavesdrops on traffic between CP and CC
 - forces either end-point to use expensive or undesired services
 - doesn't forward traffic, resulting in a DoS attack

 REMOTE = Callout server and OPES device in different administrative domains

THREAT:

 Despite OPES device authentication, malicious data transformation performed in remote callout server

EFFECT:

 Similar to those produced by malicious OPES device/collocated callout server (see previous slide)

Session Hijacking

THREAT:

A TCP/IP session is hijacked by an attacker

EFFECT:

 Integrity of content on an OPES device is compromised by the hijacker

Data Confidentiality

THREAT:

- Snoop on fields within messages
- Eavesdrop on content messages
- Can garner topology/location/IP address information
- Snoop on usage information including logging, monitoring for debugging and billing purposes
- Eavesdrop on security related information exchanged between CP and CC

- Information not to be divulged is divulged
- Eavesdropping on security related information compromises integrity of subsequent content data exchange

Denial-of-Service (DoS)

THREAT:

- Legal data traffic denied needed traffic resources due to overloading of OPES device by spurious service requests
- Resources: CPU cycles, memory, network interfaces ...
- Distributed DoS caused by attacker directing multiple nodes to launch DoS attacks simultaneously
- DoS attack can be:
 - 1) Selective

2) Generic

3) Random

- Legal data traffic unable to obtain OPES services
- Acting as a DoS component, malicious OPES intermediary interrupts data flow between CP and CC

Threat to Network Robustness

THREAT:

- Violates end-to-end addressing principles
- Not use flow-control for managing connections
- Interferes with flow control of connections it did not originate

- Endanger internet infrastructure by complicating routing and connection management
- Defeats many protective mechanisms and safeguards built into OPES architecture
- Could cause Internet congestion

- Unauthorized OPES entities
- Unauthorized actions of legitimate OPES entities
- Unwanted content transformations
- Corrupted content
- Message structure integrity

- Granularity of protection
- Hop-by-hop vs endto-end protection
- Integrity of complex data
- Denial of Service (DoS)
- Tracing and notification information

Unauthorized OPES Entities

- OPES mandates one party authorization
- OPES device authorization occurs out-ofband

THREAT:

 Discovering presence of an OPES entity and verifying authorization may present a problem

- Unauthorized OPES entity may be a malicious entity
- Malicious entity can wreak havoc on data flow between CP and CC

Unauthorized Actions of Legitimate OPES Entities

- Requesting permission from CP/CC for each rule and procedure is cumbersome
- Instead, authorization given for class of transformations
- THREAT:
 - Actual triggered procedures may maliciously perform unauthorized actions
- EFFECT:
 - Such actions can result in improper and undesired content transformation

Unwanted Content Transformations

THREAT:

- Authorized OPES service may perform actions that do not adhere to the expectations of the party that gave the authorization
- Alternatively, OPES entity acting on behalf of one party may perform transformations that another party deems inappropriate

EFFECT:

 Undesired content transformation may negate the utility of the data flow between CP and CC

Corrupted Content

THREAT:

 Malicious attack causes OPES system to deliver outdated or otherwise distorted information

- May introduce changes causing improper actions in OPES server or callout server
- These changes may be in message body, headers or both

Message Structure Integrity

THREAT:

 OPES server may add, remove or delete certain headers in a request and/or response message

- Such changes may violate end-to-end integrity requirements
- Also, such changes defeat services that use information provided in such headers

Granularity of Protection

- Content modification permission applies to portions of content
- Policies needed to refer to portions of messages and to detect modifications
- THREAT:
 - Little support for policies expressed in message parts
- EFFECT:
 - Cannot detect problems inherent in hop-by-hop data integrity measures
 - Difficult to attribute particular modification to particular OPES processor
 - Inability to automatically detect policy violations

Hop-by-hop vs end-to-end protection

- OPES data must be transmitted:
 - Without confidentiality protection, or else
 - With hop-by-hop encryption
- THREAT:
 - A malicious processor in the path can manipulate keys on that hop
 - Use of weak cryptography or poor key management in delivery path
- EFFECT:
 - By manipulating keys in some hop, confidentiality and integrity of data can be compromised without detection
 - Modifications by unauthorized parties
 - Danger of data leakage

Integrity of Complex Data

THREAT:

- OPES system may apply inconsistent transformations to interrelated data objects or references within the data object
- Deliberate replacement/deletion/insertion of links

- Such inconsistent transformations violate data integrity
- Replacement/deletion/insertion of links may violate intentions of the CP

Tracing and Notification information

THREAT:

- Inadequate or vulnerable implementation of the tracing and notification mechanisms
- Such facilities may become a target of malicious attack

- Defeats safeguards built into OPES
- Creates problems in discovering and stopping other attacks

Threats to Out-of-band data

- Threats to OPES in-band data flow
 - Caused by weakness in implementation for:
 - · Security · Authentication · Authorization
 - Threats described in previous set of slides
- Threats to out-of-band data integrity

Threats to Out-of-band Data Integrity

- Inaccurate Accounting Information
- OPES service request repudiation
- Exposure of private information
- Inconsistent privacy policy

- Exposure of privacy preferences
- Exposure of security settings
- Improper enforcement of privacy and security policy

Inaccurate Accounting Information

THREAT:

 Distortion or destruction of base or processed accounting data challenges accounting functionality

- CC wrongly charged for viewing content not successfully delivered
- CP or independent OPES service provider not compensated for services performed
- Attack on accounting system may result in incorrect resource management and DoS by artificial resource starvation

OPES service request repudiation

THREAT:

 CP or CC, initially authorizes an OPES intermediary to perform a service, later denies making it

EFFECT:

 OPES intermediary MAY be held liable for unauthorized changes to the data flow

Exposure of Private Information

THREAT:

- Private information of CC inadvertently or maliciously exposed
- Includes passwords, buying patterns, page views, and credit card numbers
- May also include logs and accounting data

EFFECT:

 CC subject to malicious actions by exposure of private information

Inconsistent Privacy Policy

THREAT:

- Privacy policy of OPES entities may not be consistent with CC or CP expectations
- Privacy related problems further complicated when OPES entity, CP and CC belong to different jurisdictions

- CC unaware that he/she does not have expected legal protection
- CP may be exposed to legal risks due to failure to comply with regulation which he is not even aware of

Exposure of Privacy Preferences & Security Settings

THREAT:

- OPES system may inadvertently or maliciously expose end user privacy settings and requirements
- OPES system may expose end user security settings when handling request and responses

EFFECT:

 Exposure of privacy preferences or security settings to a malicious entity enables possible session hijacking and other forms of attack

Improper Enforcement of Privacy and Security Policy

THREAT:

 Danger that these policies are not properly implemented and enforced

EFFECT:

 CC may not be aware that its protections are no longer in effect

Final Thoughts and Next Steps

- draft-ietf-opes-threats-00.txt> discussed
 security threats and risks that a data
 stream is exposed to due to presence of an
 OPES intermediary
- Additional comments and inputs are solicited
- Teleconferences will be resumed to address raised issues