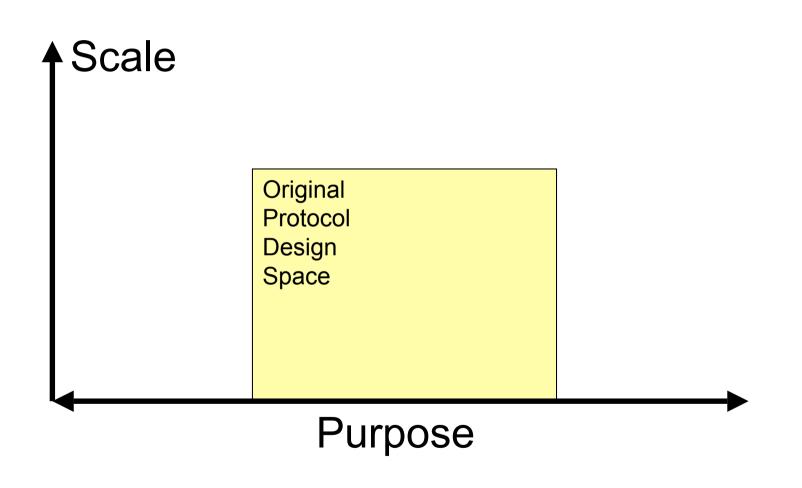
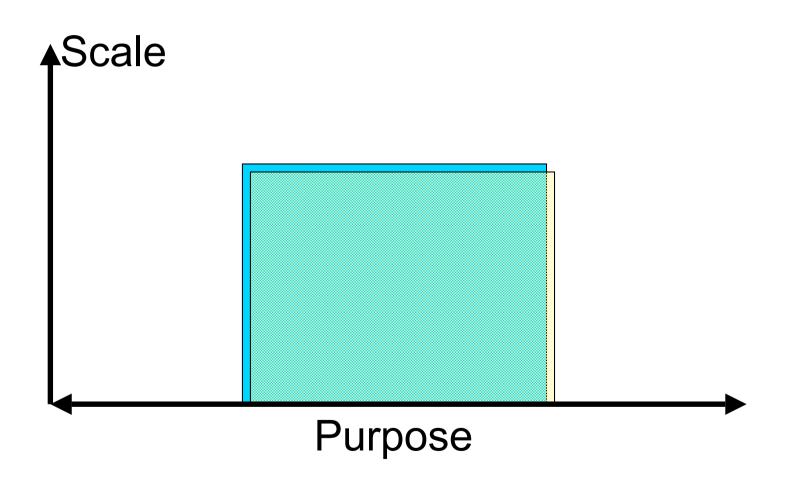
What makes for a successful protocol? draft-iab-protocol-success-01.txt

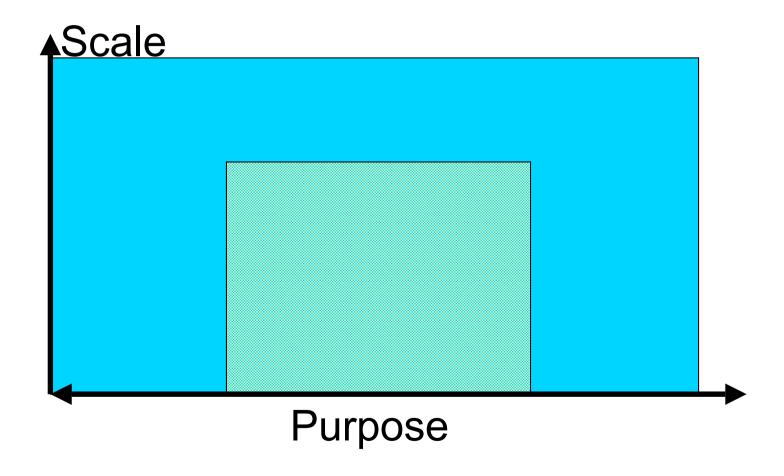

Dave Thaler

dthaler@microsoft.com

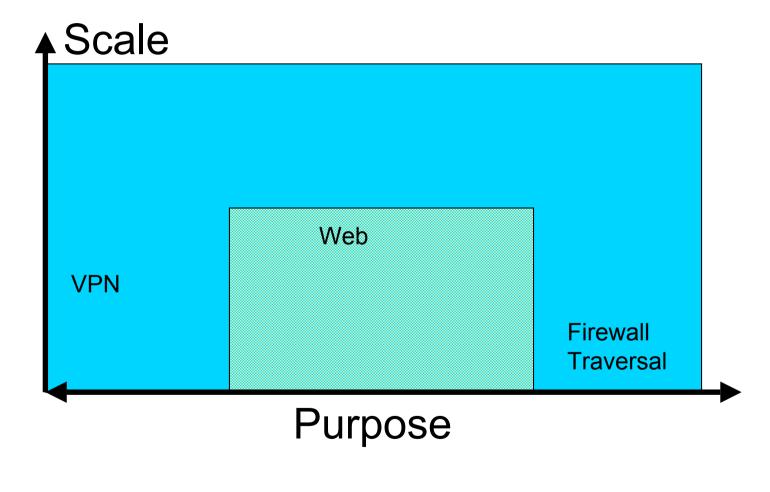
What is success?

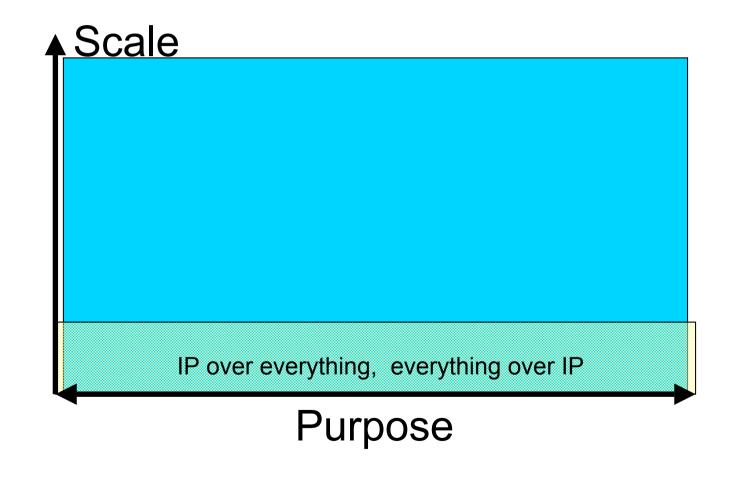
- A protocol can be successful and still not be widely deployed, if *it meets its original goals*
 - However, it's not very interesting to us for this discussion, so let's just look at things that are widely deployed.
 - Widely deployed ≠ inter-domain
- We might consider the following as some examples of successes:
 - Inter-domain: IPv4, TCP, HTTP, DNS, BGP, UDP, SMTP, SIP, etc
 - Intra-domain: ARP, PPP, DHCP, RIP, OSPF, Kerberos, etc

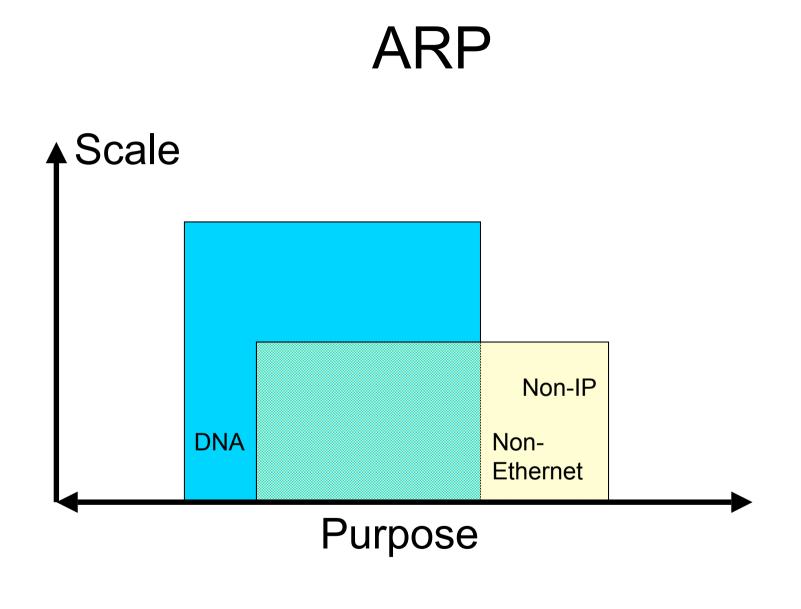

Success Axes


Some Definitions

- "successful": a protocol that is used in the way it was originally envisioned, and to the scale it was originally envisioned
- "wildly successful": a successful protocol that is deployed on a scale much greater than originally envisioned and/or in ways beyond what it was originally designed for.


"Successful"


"Wildly Successful"



HTTP

IPv4

Wild success

- Can be both good and bad
 - Undesirable side effects when used outside intended purpose
 - Performance problems
 - Ugly hacks to work around design limitations
 - High value target for attackers
 - "Death by success"

What is failure?

- Sufficient time has passed (e.g. >10 years)
- No mainstream implementations exist
 - No support in hosts/routers/whatever
- No deployment exists
 - Boxes which support it are not deployed, or
 - Protocol is not enabled on boxes that are
- No use exists
 - No applications exist that can utilize
- Cycle between the last three known as the "chicken-andegg" problem
 - Not a cause of failure, just a term used to explain lack of a value chain in existence

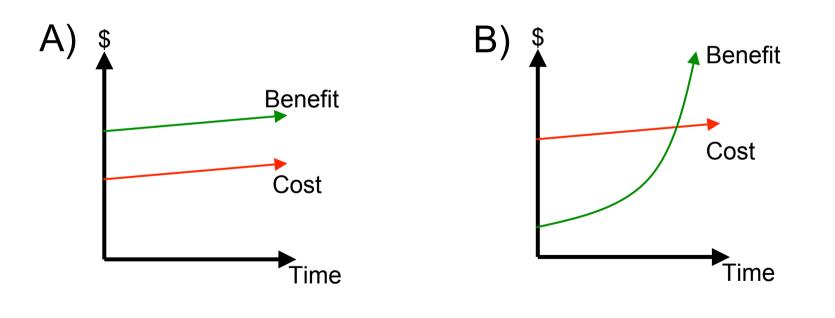
Some ways people try to solve the initial chicken-and-egg problem

- 1. Address a critical and imminent problem
- 2. Provide a "killer app" with low deployment costs
- 3. Provide value under existing unmodified apps
- 4. Narrow the intended purpose to an area where it is easiest to succeed
 - Reduce cost by removing complexity not required for that purpose
- 5. Governmental (dis)incentives: promise of longterm economic or military benefits
 - Increase financial benefits (or penalties) to industry
 - E.g. strong crypto for US DoD, IPv6 incentives in Japan, etc.

Success Factors

- What factors contribute to protocol success?
- What additional factors contribute to "wild" success?
- A successful protocol won't necessarily meet all criteria
 - Each one met may facilitate success
 - Each one not met may hinder success

Potential Success Factors


- 1. Positive net value (meet a real need)
- 2. Incremental deployability
- 3. Open code availability
- 4. Freedom from usage restrictions
- 5. Open spec availability
- 6. Open development and maintenance processes
- 7. Good technical design

Additional "wild" success factors:

- 8. Extensible
- 9. No hard scalability bound
- 10. Threats sufficiently mitigated

1. Positive net value (1/4)

• The benefits (e.g., monetary) of deploying the protocol clearly outweigh the costs of deploying it.

1. Positive net value (2/4)

- Three types of benefits:
 - 1. Relieving pain
 - 2. Enabling new scenarios
 - Often higher risk than type 1
 - 3. Incremental improvements
 - Often lower gain than type 1

1. Positive net value (3/4)

- Some costs:
 - Hardware cost: protocol changes that don't require changes to hardware are easier to deploy than those that do.
 - Overlays are one way to avoid
 - Operational interference: protocol changes that don't require changes to other operational processes and tools are easier to deploy than ones that do. (e.g., IPsec interferes with netflow, deep packet inspection, etc.)
 - Overlays are one way to partially mitigate
 - Retraining: protocols that have no configuration, or are easy to configure/manage are easier to deploy

1. Positive net value (4/4)

- Business dependencies: protocols that don't require changes to a business model (whether for implementors or deployers) are easier to deploy than ones that do
 - Dialup and always-on
 - Multicast
 - Provisioning and Peer-to-peer
- Pay to play: The natural incentive structure is aligned with the deployment requirements.
 - Those who are required to deploy/manage/configure something are the same as those who gain the most benefit.
 - That is, there must be positive net value at each organization where change is required

2. Incremental deployability

- Early adopters gain some benefit even though the rest of the Internet does not yet support
 - Autonomy: protocols that can be deployed by a single group/team are easier than those that require cooperation across multiple organizations (no flag day)
 - One-end benefit: protocols that provide benefit when only one end changes are easier to deploy than ones that don't (e.g., MIPv6 vs. HIP)
 - Backward compatibility: protocol updates that are backward compatible with legacy implementations are easier to deploy than ones that aren't.

3. Open code availability

- Implementation code freely available
- Often this is more important than technical considerations
 - IPv4 vs IPX
 - RADIUS vs TACACS+

4. Freedom from usage restrictions

 Anyone who wishes to implement or deploy the protocol can do so without legal or financial hindrance.

5. Open spec availability

- The protocol is published and made available in a way that ensures it is accessible to anyone who wishes to use it.
 - World-wide distribution: accessible from anywhere in the world
 - Unrestricted distribution: no legal restrictions on getting spec
 - Permanence: stays even after creator goes away
 - Stable: document doesn't change
- This is of course true for everything that's an RFC.

6. Open development and maintenance processes

- The protocol is developed and maintained by open processes.
- Mechanisms exist for public commentary on the protocol.
- The protocol maintenance process allows the participation of all constituencies that are affected by the protocol.
- This is of course true for IETF RFCs.

6. Good technical design

- Follows good design principles that lead to ease of implementation, interoperability, etc.
 - Simplicity
 - Modularity
 - Robust to failures

8. Extensible

- Can carry general purpose payloads/options
- Easy to add a new payload/option type

9. No hard scalability bound

- No inherent limit near the edge of the originally envisioned scale
 - Size of "address" fields
 - Performance "knee" that causes meltdown

10. Threats sufficiently mitigated

• The more successful a protocol becomes, the more attacks there will be to mitigate

How Important Are The Success Factors?

- Very Important
 - (Very) positive net value (i.e., Fills a perceived need)
 - Incremental deployability
 - Open code availability
 - Open source availability initially more important than open spec maintenance
 - Open spec availability
 - Technically inferior proposals can win if they are openly available.
 - Restriction free
 - IP did not become a wild success until removal of NSF restrictions.
- Less important for Initial success
 - Open spec maintenance
 - Many successful protocols initially developed outside the IETF
 - Technical design
 - Many successful protocols would not pass IESG review today
- Less important for *Initial* success, but important for *Wild* success
 - Extensibility
 - No hard scalability bound
 - Threats mitigated
 - Security vulnerabilities do not seem to limit initial success

How/when might we apply learnings?

- Focus on initial success factors in early stages:
 - WG charter time (if specific protocol in charter)
 - Protocol selection time (if WG selects among proposals)
 - Protocol creation time
- Focus on wild success factors when revising successful protocols
- Possible questions to ask:
 - Do the success factors exist?
 - Can the technology help potential high-profile customers?
 - Are there potential niches in desperate need?
 - How extensible should the protocol be?
 - If success is uncertain, should IETF wait or work on multiple alternatives?

What is the role of the IETF?

- Most of the success stories are ones which originated outside the IETF, and where technical quality was not a primary factor in success
- IETF had a role in improving many of these, often after success of v1 was certain
- Key is that v1 had to be extensible to allow IETF to fix after success