Mapping of YANG to DSDL
draft-lhotka-yang-dsdi-map

Ladislav Lhotka
(lIhotka@cesnet.cz)

DSDL Translator

Written in Python as a plugin for pyang, included since version 0.9.1.

Its output is @ RELAX NG schema with annotations:

Schematron (part 3 of DSDL) - semantic constraints: must, unique,
keyref

Document Schema Renaming Language (DSRL; part 8 of DSDL) -
default

Dublin Core - module metadata: belongs-to, contact, description
(top-level), organization, reference (top-level), revision

RELAX NG DTD compatibility annotations — description, reference
(except at top level)

NETMOD-specific annotations - few XML attributes attached to RE-
LAX NG elements: config, key, status, units.

Each annotation type can be selectively switched on or off.

Alternative Output Form

The draft assumes an alternative output form where RELAX NG,
Schematron and DSRL are represented as separate stand-alone

schemas. This is currently obtained from the DSDL plugin output via
XSLT transformations.

DSDL plugin output:

<element name="default-lease-time">

<sch:assert test=". <= ../max-lease-time">
default-lease-time must be less than max-lease-time
</sch:assert>

<dsrl:default-content>600</dsrl:default-content>
</element>

Stand-alone Schemas

Schematron:

<sch:pattern>
<sch:rule context="/dhcp/default-lease-time"
<sch:assert test=". <= ../max-lease-time">
default-lease-time must be less than max-lease-time
</sch:assert>
</sch:rule>
<sch:pattern>

DSRL:

<dsrl:element-map>
<dsrl:within>/dhcp</dsrl:within>
<dsrl:name>default-lease-time</dsrl:name>
<dsrl:default-content>600</dsrl:default-content>
<dsrl:element-map>

Current Status

Appendix A of the draft contains the result of an automatic translation
of dhcp module in both XML and compact syntaxes.

The plugin handles all YANG statements and types except:

Non-essential data - position, value;
yang-version (but may be used by the plugin to check compatibility);
RPC and notification signatures - input, notification, output, rpc;

error-app-tag; error-message is used only under must (inside
Schematron assert);

Extension features - argument, augment, extension, when,
yin-element;

Refinements of used groupings, multilevel derived types.

rpc and notification

Unlike the rest of a YANG module, which describes contents of an agent
datastore, the rpc and notification statements define contents of spe-
cific NETCONF messages.

Options:

1. generate separate schemas for validating datastore content and
individual RPC/notification messages.

2. one schema with multiple parts as above under a dummy root ele-
ment in a special “NETMOD-tree” namespace (e.g., <nmt :netmod-
data>).

Example Conceptual Tree

<nmt:netmod-data>
<nmt:main>
... configuration and status data ...
</nmt:main>
<nmt:rpcs>
<nmt:rpc>
<nmt:name>...</nmt:name>
<nmt:input>

</nmt:input>
<nmt:output>

</nmt:output>
</nmt:rpc>
</nmt:rpcs>

(continued)

<nmt:notifications>
<nmt:notification>
<nmt:name>...</nmt:name>

</nmt:notification>
</nmt:notifications>
</nmt:netmod-data>

extension

YANG language extensions with statement keywords in foreign names-
paces can be freely inserted (e.g., in the YIN form) into the RELAX NG
schema but it doesn’t seem to make much sense without knowing the
semantics.

An appropriate decision should be taken after gaining some experience
with real-world YANG extensions.

augment

e It is not clear what to do if a top-level augment is used for adding
new nodes to a foreign schema.

e When a grouping is used, a sibling augment with a descendant XPath
argument can add nodes to it. The problem is that it is not clear from
the module text to which grouping the augment applies:

uses foo;
uses bar;
augment some/container { ... }

This would be easier to handle:

uses foo {
augment some/container { ... }

)

uses bar;

10

Other Open Issues

1. RELAX NG grammar must define exactly one root element (other-
wise the XML document wouldn’t be well formed).

2. In XPath expressions, namespaces must be explicit.

11

No Root Element

YANG modules containing only typedefs and groupings (yang-types,
inet-types, ...) are translated into schemas that have no <start> ele-
ment, i.e., contain only pattern definitions and specify no root element.

Most RELAX NG validators label such schemas as invalid but these
“rootless” reusable schemas are a common practice endorsed by RELAX

NG authorities. It has to be understood that such schemas can never be
used as stand-alone.

12

Multiple Root Elements

YANG draft: Due to the possibility of multiple roots the modeled data
does not necessarily map to a well-formed XML document. Often a
conceptual root node (e.g. <data> or <config> element in NETCONF
RPCs) is added to overcome this problem.

This is @ more serious problem. Options are:

1. Remove the possibility of multiple roots from YANG.

2. Specify a fixed conceptual root element, such as <nmt:netmod-
data>, and use it always as the root element in the DSDL schemas.
This would also allow for integrating RPC and notification trees and
solve the problem of rootless schemas, too.

13

XPath and Namespaces

Standard XPath caveat: names used in node tests are always qualified
names and names without prefix are considered as having no names-
pace.

YANG draft about the XPath argument of must: The null namespace is
defined to be the namespace of the current module.

Result: An XPath expression appearing in must usable with standard
XML tools such as XSLT processors (without adding the namespace
prefixes).

It seems necessary, in accord with XPath specification, to require an
explicit namespace prefix (defined by the prefix statement) with all local
names appearing in XPath expressions.

14

Deviations from draft-mahy-canmod-dsdl

1. YANG is considered the primary format - DSDL translation follows
its semantics, naming, extensibility model, ...

2. NETMOD-specific annotations are used (as attributes of RELAX NG
elements) only where strictly necessary.

3. Some simplifications and corrections.

4. Readability of RELAX NG compact syntax is important.

15

import and include

Both YANG and RELAX NG have powerful extensibility models, however
with significant differences.

The mapping algorithm pulls recursively all definitions (grouping and
typedef) that are really used from the imported modules and installs
them (with mangled names) in the same DSDL schema.

YANG submodules share the same namespace with the parent module,
so the modularity can be retained - RELAX NG <include> pattern is

used.

16

Simplifications

e The unique statement and keyref type are not represented using
NETMOD-specific annotations — Schematron asserts are directly in-

serted. In contrast, key is mapped to nm: key attribute since it carries
additional semantics.

e mandatory and presence are modeled using RELAX NG means
(Koptional>)

e Schematron asserts are not wrapped in <pattern> and <rule>

elements. They are added when creating the stand-alone Schematron
and DSRL schemas.

17

Default Values - Why DSRL?

RELAX NG DTD Compatibility: An a:defaultValue attribute on a RE-
LAXNGattribute element specifies the default value for the attribute.

DSRL: A dsrl:default-content element can be used to define a
default value for an element defined in the schema.

XML representation of YANG leafs uses elements, so DSRL is the right
way.

Besides, it may be useful that DSRL can be presented as a standalone
schema so that default values are collected in a separate document.

18

RELAX NG Compact Syntax

Annotations in the compact syntax are very tricky and can easily make

the schema unreadable.

e Grammar annotations: Dublin Core terms

dc:creator ["yang-central.org" |

¢ Initial annotations: NETMOD-specific attributes
[nm:config = "false"]
element status { ... }

e Following annotation: Schematron and DSRL

element max-lease-time {

xsd:unsignedInt >> dsrl:default-content ["7200"]

)

19

e DTD compatibility documentation annotations: description and ref-
erence

See: RFC 2132, sec. 3.17
element domain-name { inet-types__domain-name }?

20

