
1

MAC Labeling and 
Enforcement in NFSv4

David P. Quigley
dpquigl@tycho.nsa.gov

National Security Agency
National Information Assurance Research Laboratory 

(NIARL)



2

Access Control Concepts

● Subjects - Active entities (e.g. executing 
programs).

● Objects - Passive entities (e.g. files, sockets).
● Reference Monitor

– Mediates all accesses by subjects to objects.
– Tamperproof, non-bypassable, verifiable



3

Discretionary Access 
Control (DAC)

● Typical form of access control.
● Decisions based on user identity/ownership.
● Users and their programs are free to change 

access rules (e.g. file modes, ACLs).
● No protection against malicious and flawed 

software.
● Coarse-grained privilege, prone to escalation.



4

Mandatory Access 
Control (MAC)

● Historically limited to separate “trusted” 
operating systems.

● Decisions based on security labels.
● Access rules defined by admin/organization.
● Can confine malicious and flawed software.
● Can enforce system-wide security requirements.



5

Flexible MAC

● Enabling MAC to address a full spectrum of 
security needs (confidentiality, integrity, least 
privilege, separation of duty, etc).

● Supports a wide range of security models (BLP, 
Biba, Type Enforcement, etc).

● Requires encapsulation of security labels/contexts 
and policy logic.



6

MAC entering the 
mainstream

● SELinux released as a proof of concept in 
December 2000, mainstreamed in Linux 2.6 since 
2003.

● FreeBSD MAC framework and SEBSD module.
● Solaris trusted extensions and Solaris FMAC.
● All of these systems could benefit from NFSv4 

MAC support.



7

security_attribute 
RA 

● UTF-8 encoded string
● Per file object attribute
● RA format

– Opaque data?
– Structured string?
– Combination of both? (<opaque>@doi)



8

Label Change Notification

● Label change callback
– Fall back on cache timeout 
– Scaling problems?

● OP_PUTFILELABEL
– Pass client's idea of label state
– Server returns ENFSRETRY or ENFSSTALE
– Client grabs new file handle. 



9

Process Label Transport
(OP_PUTCLIENTLABEL)

● Server needs to know client's process context
● Place PUTCLIENTLABEL call at start of each 

compound op
● Indicates process context for remaining 

operations
● Similar semantics to PUTFH



10

Label Translation

● Client and server may have different DOIs
– different MAC models
– different policy versions
– different policy semantic

● Similar to ID -> {g,u}id mapping
● Administration issues?
● Similar model to DNS forwarding?
● Central DOI authority?



11

Dumb Server

● Truly Dumb Server
– Server does not maintain a DOI
– Stores label directly
– Strip or leave the DOI?

● Semi-Dumb Server
– Server maintains it's own DOI
– Translates label into its own DOI
– Appends it's DOI onto label when sending



12

Exports

● seclabel export option: enables exporting of 
file labels

● filelabel=<label> all files on this export 
given this label

● clientlabel=<label> client process label 
is always given this label



13

Smart Server

● Maintains a DOI
● Maintains local policy
● Uses client process label in 

– access decisions
– file creation



14

Questions?


