
IPv4/IPv6 Translation: Framework

Li, Bao, and Baker

Outcome from the Montreal Interim

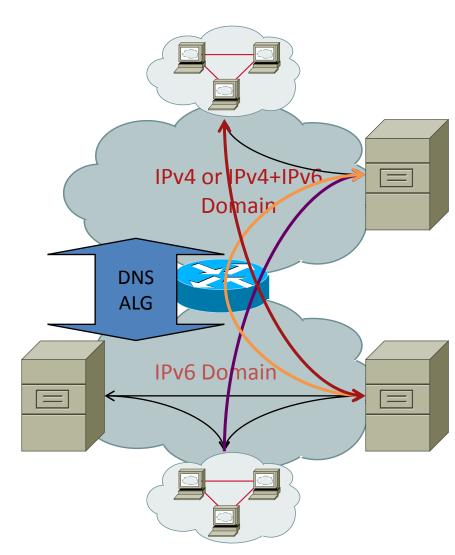
- Basically, merging NAT64 and IVI to produce a common translation technology
 - Not to exclude other documents, but these form the basis
- Described in at least four documents:
 - Framework
 - draft-baker-behave-v4v6-framework
 - SIIT Update basic translation behavior
 - draft-baker-behave-v4v6-translation
 - Extensions for stateful translation
 - draft-bagnulo-behave-nat64
 - DNS Translation gateway
 - draft-bagnulo-behave-dns64
 - Possible future documents
 - FTP ALG etc

- The IPv4 packets arrived in the IP/ICMP translator will be translated to IPv6 packets.
 - The translator translates the packet headers from IPv4 to IPv6 and translate the addresses in those headers from IPv4 addresses to IPv6 addresses.
- The IPv6 packets arrived in the IP/ICMP translator will be translated to IPv4 packets.
 - The translator translates the packet headers from IPv6 to IPv4 and translate the addresses in those headers from IPv6 addresses to IPv4 addresses.

Terminology (1)

- State
 - Refers to dynamic per-flow or per-host state
- Stateless translation
 - The translation information is carried in the address itself, permitting both IPv4->IPv6 and IPv6->IPv4 sessions establishment.
- Stateful translation
 - Translation state is maintained between IPv4 address/port pairs and IPv6 address/port pairs, enabling IPv6 systems to open sessions with IPv4 systems.

Terminology (2)

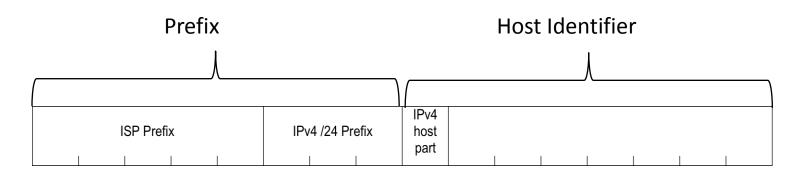

- IPv4-mapped IPv6 address
 - The IPv4-mapped IPv6 addresses are the IPv6 addresses which have unique relationship to specific IPv4 addresses.
 - This relationship is self described by embedding IPv4 address in the IPv6 address.
- Unmapped IPv6 address
 - The unmapped IPv6 addresses are general IPv6 addresses.
 - There may exist relationship to the IPv4 addresses, but this relationship is maintained as the states (mapping table between IPv4 address/port and IPv6 address/port) in the translator.
 - The states are either manually configured or session initiated.

Terminology (3)

- IPv4 address pool
 - In the stateful mode, a certain amount of IPv4 addresses are maintained in the translator as the IPv4 address pool.
 - In the stateless mode, there is no IPv4 address pool in the translator. A special block of IPv4 addresses are reserved, embedded in the IPv6 addresses and represented by the IPv6 end systems.

IPv4/IPv6 Translation: temporary tool to help coexistence/transition

- IPv4 addresses
 - Embedded in an IPv6 prefix in the IPv6 domain
 - Stateless and stateful translation
- Connectivity provided:
 - IPv4 <-> IPv4
 - IPv6 <-> IPv6
 - 1:N IPv6 -> IPv4 (unmapped)
 - 1:1 IPv6 <-> IPv4 (mapped)
- Attributes:
 - Enables services in both domains
 - Stateless translation works in multiple providers, multiple translators
- Experience:
 - IVI 2 years in CERNET
 - NAT-PT/SIIT commercially deployed



The address format chosen

- Basic format:
 - IPv4 address embedded in IPv6 address
- Prefix: provided by the network administration
 - 0::0/3 format has routing issues with multiple translators and with multiple IPv4 domains
 - 0::0/3 format partially deprecated in RFC 4291
- Placement of IPv4 address:
 - Cook's choice: IPv4 bit 0 in IPv6 bit 33..63 or 96
 - Prefix64::/96 format appropriate for CPE and for stub IPv4 networks
 - Putting upper part of prefix in routing locator appropriate for ISP usage

ISP usage #1

- Carrier Grade NAT, if you will
 - Designed to facilitate carrier transition with customers in various phases of transition
- Enables service:
 - IPv6 /48 or longer general prefix to customer
 - Equivalent of IPv4 /24 or longer to customer in IPv6 form for access by remote IPv4-only hosts with 1:1 stateless translation
 - Requires advertisement of /64 by edge network for IPv4-mapped IPv6 addresses
 - IPv6-only service with
 - remote IPv4 hosts accessing local mapped IPv6-only servers and
 - local IPv6 hosts accessing remote IPv4-only servers

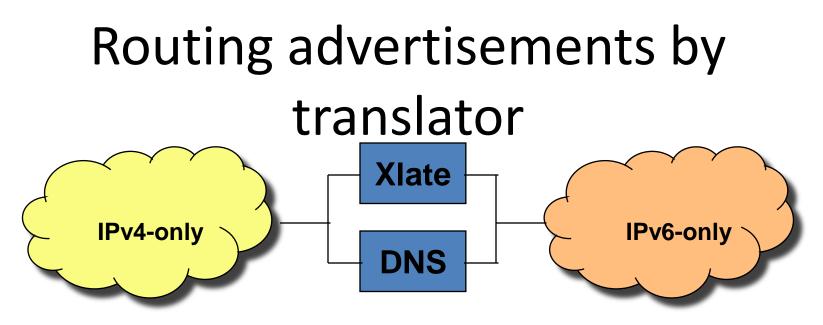
ISP usage #2 (residential/SOHO/SMB)

- Dual stack customers around IPv6-only network
- /64..48 to customer results in
 - One /64 translated to IPv4
 - 2ⁿ-1/64 IPv6 subnets

ISP provided /96 prefix

No IPv4-accessible servers

IPv6-only **Network Domain** Or host **IPv4 Address** IPv4+IPv6 LANs


Stub network usage: Access to legacy equipment

- IPv6-only network, IPv4-only equipment (could be dual stack but network chooses not to)
- /64 prefix to RFC 1918 space with 1:1 stateless translation

IPv6-only Network Domain or host

 Network-provided /96 prefix
 IPv4 Address

 IPv4 LAN
 IPv4 LAN

- In the IPv4 network
 - Translator advertises an IPv4 prefix for stateless translation in ISP#1 case
 - Translator advertises an IPv4 prefix for the stateful translation address pool
 - Attracts traffic destined for translation to IPv6
- In the IPv6 network
 - Translator advertises an IPv6 prefix for entire IPv4 address space
 - Attracts traffic destined for translation to IPv4

Usage of 1:n translation

- Primarily to let IPv6-only hosts with general format addresses access IPv4-only servers/peers
- IPv4 access to general IPv6 hosts excluded due to complexity

Usage of DNS translator

- Client/Server and Peer/Peer
 - Enable IPv6 hosts with mapped addresses to be accessible to IPv4 clients/peers
 - Enable IPv4 hosts to be accessed by IPv6 clients/peers
- Designed for simplicity and maintainability
 - Simplest case is static configuration of records
 - Capable of dynamic translation A<->AAAA
 - Capable of multiple DNS servers with predictable results and no state other than DNS caches