

Relating ITU and IPPM Metrics: Framework, Loss, and Delay

Will E. Leland wel@research.telcordia.com 973-829-4376 15 March 1999

Relating ITU and IPPM Metrics

- Nobody wants multiple standards for the same thing!
 - Clear statement of the area of overlap
 - Consilience within overlap
- How do we get there?
 - Goals of IPPM and ITU/ANSI Internet metrics
 - Terminology
 - Technical details of specific metrics

Common Goals for Internet Metrics

Support accurate, consistent understanding of internet performance and reliability

- Usefulness
- Clear, unambiguous standards
- Independence from technology and implementation
- Wide applicability
- Reproducible methodology
- Comparable measurements
- Fairness
- Lack of artifacts

Different Emphasis

ITU

- Focus: evaluate service
- Define grades of service
 ⇒ Overall measures (statistical)
- Exclude unfair uses
- Emphasize passive observation Without forbidding active probes
- Precisely define required quantities
- Model IP layer of network
 - \Rightarrow Exclude other levels

- Focus: measure network
- Characterize "absolute" behavior
 ⇒ Singleton measurements
- Avoid biased sampling
- Emphasize active probing
 Without forbidding passive tools
- Discuss implementation issues
- Measure network properties
 - \Rightarrow Exclude host effects

Shared Terminology

- Host
- Router (special case of host)
- Link
- Identity based on IP address (not DNS name)
 - ⇒ interface, not processor

•

Approximately Equivalent Terminology

ITU

- Network section: set of hosts in one jurisdiction and all their links
- Circuit section: link between host and router in another jurisdiction
- Corresponding events: an association between packets crossing different measurement points

- Cloud: undirected graph of routers and links
- Exchange: host-to-cloud or cloud-to-cloud link
- Single packet: identification of a packet sent with a specific packet received

Terminology without Exact Equivalents

ITU

- IP packet transfer reference event <no defined term> (IPRE) requires valid IP header, SRC, DST
- <no defined term> only reality is visibility at measurement point (MP)
- Errored or spurious packet
- Permissible measurement point
- <no defined term> for a given packet, roughly a sequence of IPREs

- Wiretime: when bits pass interface; measurement processing isn't of interest
- Well-formed packet
- <no defined term>
- Path: unidirectional sequence of hosts and links, starting and ending with a host

Differences in What's Explicit

ITU

- Audience: IP users, providers, & equipment manufacturers (no intent to exclude software developers)
- Emphasis on network structure
- Require true time
- Measurement points

- Audience: IP users and providers (no intent to exclude equipment manufacturers or software developers)
- Emphasis on measured path
- Discussion of deviation of measured from true time
- Measurement procedures

Technical Differences in Loss & Delay (with several kinds of reconciliation)

- Missing but not incompatible
 - Composition of metrics (in IPPM)
 - Periodic sampling (in I.380 and IPPM Framework but not Loss and Delay documents)
 - Explicit mention of passive measurement (in I.380)
 - Explicit application to internal segments of path (in I.380)
- Formal translation: ITU ⇔ IPPM
 - IP packet transfer delay ⇔ Type-P-One-Way-Delay
 - Loss \Leftrightarrow undefined delay
 - Statistical aggregate (e.g., quantile)
 ⇔ same aggregate function applied to finite delays

Technical Differences in Loss & Delay (continued)

- Empirical map
 - IPRE ⇔ wiretime
 characterize processing delay between wiretime and MP visibility
 Note that this relationship may be different for host entry or exit events
 than for network ingress or egress events
 - Corresponding events ⇔ same packet
 The intent of the standards is to make these concepts consistent; the adequacy of specific approaches requires study
- No feasible exact map
 - Misdirected, spurious, errored, lost vs undefined-delay packet (note that a long-delayed packet may be classified as spurious)

Technical Differences in Loss & Delay (continued)

- Undefined in one framework
 - Undefined in ITU model
 - clock offset, skew, and drift
 - time measurement uncertainty
 - security considerations
 - Undefined in IPPM model
 - misdirected packet
 - spurious packet
 - metrics for errored packets

Which Differences Matter? "Don't Panic!"

- Most differences in approach and emphasis serve differences in intended use, but have no operational significance
- A few could be confusing:
 - IPPM does not discuss aggregate statistics for finite-delay packets
 - I.380 views a packet that traversed a non-permissible MP as lost
 - I.380 does not discuss differences between actual reference-event time and measured time
 - I.380 implies reference-event time is at IP layer of host stack, while IPPM uses network ingress or egress
 - IPPM does not define metrics for nonconforming packets, such as misdirected, spurious, and errored
- Would this kind of information be appropriate for an IPPM Informational RFC?

