IETF Draft

Transmission of Progressive Multimedia Streams An RTP Payload Format for Erasure-Resilient

M. Nguyen, G. Liebl, T. Stockhammer

Institute for Communications Engineering Munich University of Technology email: {nguyen,liebl,tom}@lnt.ei.tum.de

B. Wimmer, F. Burkert

Siemens AG - ICM CD MP

email: {bernhard.wimmer,frank.burkert}@mch.siemens.de

J. Pandel

Siemens AG – ZT IK 2

email: juergen.pandel@mchp.siemens.de

Siemens

IETF Draft: draft-Int-avt-uxp-00.txt

July 2000

Nguyen, Liebl, Stockhammer, Wimmer, Burkert, Pandel

An Example for Future Source Coding Techniques

Siemens

IETF Draft: draft-Int-avt-uxp-00.txt

Nguyen, Liebl, Stockhammer, Wimmer, Burkert, Pandel

Packet Radio Networks — the Wireless Extension of the Internet

Siemens

IETF Draft: draft-Int-avt-uxp-00.txt

Progressive Source Coding and Image Quality

Siemens

Nguyen, Liebl, Stockhammer, Wimmer, Burkert, Pandel

IETF Draft: draft-Int-avt-uxp-00.txt

Unequal erasure protection (UXP)

Transmission Block (TB)

per packet

L bytes

Principle:

- ullet T+1 different erasure protection classes \mathcal{A}_i
- $ullet A_i$ rows per class:

$$\sum_{i}^{L}A_{i}=L.$$

ullet index i denotes number of parity symbols per class

Siemens

IETF Draft: draft-Int-avt-uxp-00.txt

n packets

Nguyen, Liebl, Stockhammer, Wimmer, Burkert, Pandel

Unequal erasure protection (UXP) — cont.

Decoding procedure at the receiver:

- all packets are filled column-bycolumn into a similar TB
- for every erased packet, the respective column is filled with erasure markers
- if less than i+1 packets have been lost, the content of all erasure protection classes $\mathcal{A}_i, \mathcal{A}_{i+1}, \ldots, \mathcal{A}_T$ can be recovered by applying row-wise erasure decoding

Siemens

IETF Draft: draft-Int-avt-uxp-00.txt

RTP Payload Structure

RTP header (fixed RTP header):

- Timestamp: Equals the sampling instant of the first octet in the data block. All packets in a transmission block should have the same timestamp value
- ullet PT: Dynamic type, which is obtained through out-of-band signaling.
- All other fields are assigned as in a regular fixed RTP header.

Additional header (UXP header): \Box

block length
1 2 3 4

- \times X (1 bit): extension bit for future enhancements; default: 0
- block PT (7 bits): regular RTP payload type to indicate primary source encoding of the media
- N (8 bits): number of packets (columns) in one TB (interleaver)

IETF Draft: draft-Int-avt-uxp-00.txt

In-Band Signaling of the Erasure Protection Profile (EPP)

Adaptation of the EPP to varying source and channel characteristics requires signal-

- out-of-band (very inefficient)
- special fields in the RTP payload header (inefficient, protection against erasures?)
- in-band signaling by means of descriptors

Siemens

IETF Draft: draft-Int-avt-uxp-00.txt

Conclusion

Benefits of the proposed scheme:

- constant delay independent of the number of lost packets
- constant packet length to avoid segmentation overhead due to stuffing at link
- progressive source coding combined with regressive channel coding results in a graceful degradation of the quality of service at application level
- fast dynamic adaptation to varying link conditions through efficient inband signaling of the protection profile
- applicable to streaming and conferencing applications
- independent of the media type to be transmitted
- open for future extensions

IETF Draft: draft-Int-avt-uxp-00.txt

