About this Draft

- Deals with the following issues:
 - IP transport over optical networks
 - IP-centric control plane for optical networks (MP?S-based)
- Defines terminology
- Describes the optical network model
- Describes service models
- Describes architectural alternatives
- Defines requirements
- Proposes an evolution path for IP over Optical capabilities
Outline

• Network and service models
• IP over Optical network services evolution
• The role of MP?S
• IP over Optical network architectures
• IP-centric control plane issues
• Conclusion
Outline

• Network and service models
 – Network Model
 – Domain Services Model
 – Unified Services Model
• IP over Optical network services evolution
• The role of MP?S
• IP over Optical network architectures
• IP-centric control plane issues
• Conclusion
IP over Optical: Model
Service Models: Domain Services Model

- Optical network provides well-defined services (e.g., lightpath set-up)
- IP-optical interface is defined by actions for service invocation
- IP and optical domains operate independently; need not have any routing information exchange across the interface
- Lightpaths may be treated as point-to-point links at the IP layer after set-up
Domain Services Model: Lightpath Set-Up

1. Decision to establish lightpath (e.g., offline TE computations)
2. Request lightpath set-up
3. Internal optical network signaling
4. Lightpath set-up requested at destination
5. Lightpath set-up accepted
6. Internal optical network signaling
7. Successful lightpath set-up
Service Models: Unified Service Model

- IP and optical network treated as a single integrated network for control purposes
- No distinction between IF1, IF2 and router-router (MPLS) control plane
- Services are not specifically defined at IP-optical interface, but folded into end-to-end MPLS services.
- Routers may control end-to-end path using TE-extended routing protocols deployed in IP and optical networks.
- Decision about lightpath set-up, end-point selection, etc similar in both models.
Unified Service Model: End-to-End Path Set-Up

1. Trigger for path set-up (e.g., TE decision)
2. End-to-end path computation (may use previously declared Fas, or visibility into optical network topology)
3. Forward signaling for path set-up
4. Reverse signaling for path set-up
Outline

- Network and service models
- IP over Optical network services evolution
- The role of MP?S
- IP over Optical network architectures
- IP-centric control plane issues
- Conclusion
IP over Optical Services Evolution Scenario

- Definition of capability sets that evolve
- First phase: Domain services model realized using appropriate MP?S signaling constructs

MP?S-based signaling for service invocation, No routing exchange
Evolution Scenario (contd.)

Evolution Scenario (Contd.)

- Phase 3: Peer organization with the full set of MP?S mechanisms.

MP?S-based signaling for end-to-end path set-up.
MP?S-based signaling within IP and optical networks.
Full routing information exchange.
Outline

- Network and service models
- IP over Optical network services evolution
- The role of MP?S
- IP over Optical network architectures
- IP-centric control plane issues
- Conclusion
The Role of MP?S

- This framework assumes that MP?S will be the basis for supporting different IP over optical service models
- Main expectations:
 - Define signaling and routing mechanisms for accommodating IP over optical network service models
 - Define representations for addressable entities and service attributes
- Realize above within the framework of requirements for different service models
- Define a clear set of mechanisms for each set of (increasingly sophisticated) capabilities required
- Accommodate an evolution path for service capabilities
Outline

• Network and service models
• IP over Optical network services evolution
• The role of MP?S
• IP over Optical network architectures
 – Architectural alternatives
 – Routing approaches
• IP-centric control plane issues
• Conclusion
IP over Optical Networks: Architectural Models

- Architectural alternatives defined by control plane organization
 - Overlay model (loosely coupled control planes)
 - Augmented model (loosely coupled control planes)
 - Peer model (tightly coupled control planes)

- Routing approaches
 - Integrated routing (peer model)
 - Domain-specific routing (augmented model)
 - Overlay routing (overlay model)
Integrated Routing: OSPF

- Entire client-optical network treated as single network. Both client and optical networks run same version of OSPF protocol
- Client devices (routers) have complete visibility into optical network
- Clients compute end-to-end path
- Client border devices must manage lightpaths (bandwidth allocation, advertisement of virtual links, etc.)
- Determination of how many lightpaths must be established and to what endpoints are traffic engineering decisions
Domain-Specific Routing: BGP

- Client network sites belong to a VPON. Client border devices and border OXCs run E-BGP. Routing in optical and client networks can be different
- BGP/MPLS VPN model defined in draft-rosen-rfc2547bis-02.txt may be applied
- Determination of how many lightpaths must be established and to what endpoints are traffic engineering decisions
Overlay Routing

- Each client border router registers its address (and VPON id) with the optical network
- Optical network allows other client border routers belonging to the same VPON to query for addresses.
- IP routers establish lightpaths and run a routing protocol on the overlay topology
- Determination of how many lightpaths must be established and to what endpoints are traffic engineering decisions
Outline

- Network and service models
- IP over Optical network services evolution
- The role of MP?S
- IP over Optical network architectures
 - IP-centric control plane issues
- Conclusion
IP-centric Control Plane: Main Issues

- Control procedures within and between sub-networks are distinguished.
- MP?S control plane is assumed. Issues considered:
 - Identification
 - Neighbor discovery
 - Topology discovery
 - Restoration models
 - Route computation
 - Signaling issues
 - Optical internetworking
Identification

- Termination point identification in optical networks
 - Possible structure: Node, Port, Channel, Sub-channel
- Trail segment identification between adjacent OXCs
 - MP?S labels with the required structure (e.g., port, channel, sub-channel)
- SRLG Identifiers: Flat identifiers?
Neighbor Discovery

- To determine the local link connectivity between adjacent OXCs
 - Serves as the first step towards topology discovery
 - Required for specifying MP?S labels over optical links
- Neighbor discovery over opaque and transparent links
 - Procedures TBD
 - LMP is referred as a possibility
Topology Discovery

- Link state protocol recommended
- Bundling recommended to reduce number of adjacencies and links represented
- Bundling structure is TBD.
- The encoding of restoration-related parameters for computing shared protection paths is TBD
Route Computation & Signaling

- Route computation with SRLG constraints is discussed
- Signaling issues described
 - Bi-directional lightpaths
 - Fault-tolerance
 - Signaling for restoration
Requirements discussed:
• Common, global addressing scheme for optical path endpoints
• Propagation of reachability information
• End-to-end path provisioning using signaling
• Policy support (accounting, security, etc)
• Support for subnet-proprietary provisioning and restoration algorithms
Multi-domain restoration:
• Allow possibility of proprietary restoration in each subnetwork
• Specify an overall end-to-end restoration scheme as backup.
• Signaling and routing for end-to-end restoration
Conclusion

• The draft gives a high-level overview of IP over Optical service models and architectures
• Recommends an evolutionary approach to IP over optical, starting from simple capabilities and going to more sophisticated capabilities
• IP over Optical requirements not yet defined in the framework
 – Domain services model requirements available
• Restoration issues require further discussion
• IP over optical traffic engineering issues need coverage