
IPv6 DNS transition and
deployment

Rob Austein <sra@hactrn.net>
50th IETF, Minneapolis

 The problems

 We have two complete IPv6 DNS solutions
 One is standard, the other is deprecated
 Known implementations use the deprecated one
 This is becoming a real issue for IPv6 deployment

 Much concern about complexity of newer stuff and whether we really need it

 Some of the new stuff requires extensive infrastructure upgrades

 Strong case for the advanced features of the new stuff has not been made

 Overview of proposed approach for A6

 Write AAAA -> A6 transition spec
 Almost certainly requires protocol fiddling, hence DNSEXT work
 Almost certainly will require updating or augmenting A6 spec

 Write "Case For A6" or admit that we can’t make one
 Recruiting security folks to help with time-to-resign issues
 Need to identify and address any other issues

 Goal is to have both docs ready by IETF 51 in London
 Yes, this is aggressive

 Why A6 is worth talking about

 A6 does provide features that AAAA can not provide

 "Degenerate" case of A6 semantically identical to AAAA

 We do not yet know whether we need A6’s extra features and may not until

it’s too late

 Paranoia therefore suggests that:
 We should deploy A6 in case we need it
 We should only use it in the degenerate case for now

 None of the above to be construed as lessening our need for a "Case For

A6" doc

 Overview of A6 transition plan

 NB: This is still wet, and smells faintly of beer

 "Real" data will be A6, degenerate case only for now

 Stub clients wanting AAAA to be supported by synthesis from A6 data
 Synthesis to be performed by entity providing recursive service
 Synthesized data probably will not be signed

 If a query does not contain EDNS indicator, additional section IPv6

addresses to be AAAA

 Root and TLD zones contain only (degenerate) A6, not AAAA

 Binary labels

 Proposal: punt ’em

 Binary labels do not provide any features that can’t be provided by "nibbles"

 Both are ugly. Both need better user interfaces.

 Binary labels are painful to deploy, because of the new label type

 DNAME can ease some of the pain of the "nibble" solution

 DNAME

 Very dangerous, but also potentially useful

 DNAME does provide new functionality that it would be difficult to provide

any other way
 Not quite impossible (forests of CNAMEs), just prohibitively painful

 Deployment problem not as bad as binary labels

 Can make "nibble mode" reverse tree less painful

 Recommendation: keep DNAME, but discourage gratuitous use
 Easy to say, much harder to do

