
Provably Secure Session Key Distribution|

The Three Party Case

Mihir Bellare� Phillip Rogawayy

Abstract

We study session key distribution in the three-party set-
ting of Needham and Schroeder. (This is the trust model
assumed by the popular Kerberos authentication system.)
Such protocols are basic building blocks for contemporary
distributed systems|yet the underlying problem has, up un-
til now, lacked a de�nition or provably-good solution. One
consequence is that incorrect protocols have proliferated.
This paper provides the �rst treatment of this problem in
the complexity-theoretic framework of modern cryptogra-
phy. We present a de�nition, protocol, and a proof that
the protocol satis�es the de�nition, assuming the (minimal)
assumption of a pseudorandom function. When this assump-
tion is appropriately instantiated, our protocols are simple
and e�cient.

1 Introduction

The main goal of cryptography is to enable secure commu-
nication in a hostile environment: two parties, Pi and Pj,
want to safely communicate over a network occupied by an
active adversary. Usually, Pi and Pj will want to ensure
the privacy and authenticity of the data they send to each
other; to this end, they will encrypt and authenticate their
transmissions. But before Pi and Pj can use these tools they
will need to have keys. Indeed, without keys, cryptography
simply cannot get o� the ground.

Much research in modern cryptography has focused on
how to use keys to provably achieve goals like encryption
and signatures (private or public key). There is compar-
atively little theoretical work on key distribution itself, at
least in the realistic model of an active adversary. In partic-
ular, central problems in this area still lack de�nitions and
provably-good solutions.

This paper provides provable security for the three-
party case of session key distribution. The ideas extend
to treat other settings, but the three-party one is the most
prevalent in present-day systems. In particular three-party
session key distribution is the problem which the well-known
Kerberos authentication system attempts to solve [20].

� IBM T.J. Watson Research Center, P.O. Box 704, Yorktown
Heights, New York 10598. e-mail: mihir@watson.ibm.com

y Dept. of Computer Science, Eng. II Bldg., University of Califor-
nia, Davis, California 95616. e-mail: rogaway@cs.ucdavis.edu

1.1 The problem: an informal description

In a distributed system communication between parties typ-
ically takes place in \sessions." A session is a relatively short
period of interaction between two parties which has an asso-
ciated \session key" used to protect it. The central notion we
aim to capture is that of secure distribution of these session
keys.

We let fP1; : : : ; PNg denote the parties in the dis-
tributed system. A key feature of sessions is that a given
pair of players, Pi and Pj, may simultaneously maintain
multiple sessions (each with its own session key). Thus it
is not really Pi and Pj which form the logical endpoints of
a secure session; instead, it is an instance �s

i;j of Pi and an
instance �t

j;i of Pj. We emphasize instances as a central
aspect of the session key distribution problem, and one of
the things that makes session key distribution di�erent from
many other problems.

It is the goal of a session-key distribution protocol to
provide �s

i;j and �t
j;i with a session key �s;ti;j to protect their

session. Instances �s
i;j and �t

j;i must come up with this key
without knowledge of s, t, or whatever other instances may
currently exist in the distributed system.

An active adversary attacks the network. She controls
all the communication among the players: she can deliver
messages out of order and to unintended recipients, concoct
messages entirely of her own choosing, and start up entirely
new instances of players. She may acquire session keys and
corrupt players themselves. In the face of such a power-
ful adversary secure session key distribution is only possible
when Pi and Pj have some information advantage over the
adversary.

In this paper we realize this information advantage by
way of a trusted Key Distribution Center, S, with whom
each party Pi shares a long-lived key, Ki. Because of the
involvement of the disinterested party S, this style of session-
key distribution is called three-party key distribution.1

Later sections will formalize the problem appropriately,
specifying, in particular, what are desirable properties of
session keys and what makes them di�erent from long-lived
keys. But we comment that the above paragraphs, while
still quite informal, are already at a level of precision be-
yond the problem's usual explication (in particular due to
the consideration of instances).

A reader's �rst thought might be that it sounds easy to
design a protocol to solve this problem. Perhaps the follow-
ing will help indicate that this is not really so.

1 Other ways of realizing the trust advantage (not addressed in this
paper) are: for each (i; j), parties Pi and Pj might share a long-lived
key Ki;j ; or, each Pi might have a public key which all other parties

know, and for which Pi holds the secret counterpart.

1

1.2 A troubled history

The earliest and most inuential articulation of the three-
party session key distribution problem is by Needham and
Schroeder in 1978 [17]. They talk about the use of such
protocols and describe a number of candidate ones. In the
years following their paper tens of session-key distribution
protocols appeared and were implemented. Essentially all of
this work has been ad hoc: authors would devise a protocol
and then repeatedly try to break and �x it. But Needham
and Schroeder had prophetically ended their paper with a
warning on this approach, saying that \protocols such as
those developed here are prone to extremely subtle errors
that are unlikely to be detected in normal operations. The
need for techniques to verify the correctness of such pro-
tocols is great : : :". Evidence of the authors' claim came
unexpectedly when a bug was pointed out in their own \Pro-
tocol 1" (Denning and Sacco, [8]).2 Many related protocols
were eventually to su�er the same fate. As a result of a long
history of such attacks there is �nally a general consensus
that session key distribution is not a goal adequately ad-
dressed by giving a protocol for which the authors can �nd
no attacks.

A large body of work, beginning with Burrows, Abadi
and Needham [7], aims to improve on this situation via the
use of special-purpose logics. The aim is to demonstrate a
lack of \reasoning problems" in a protocol being analyzed.
The technique has helped to �nd errors in various protocols,
but a proof that a protocol is \logically correct" does not
imply that it is is right (once its abstract cryptographic op-
erations are instantiated). Indeed it is easy to come up with
concrete protocols which are logically correct but blatantly
wrong. In contrast, we seek methods for which a proof of a
protocol's correctness means a great deal more.

1.3 Provable security for three-party session

key distribution

In this paper we bring provable security to three-party key
distribution. We de�ne the problem, specify a protocol for it,
and prove our protocol correct, assuming only the existence
of a pseudorandom function family.

Theorem. If there exists a pseudorandom function family
then there exists a secure protocol for three-party session key
distribution.

The formal statement is given by Theorem 3. It is worth
pointing out that while there are a great many three-party
key distribution protocols in the literature, we know of no
earlier one which meets our de�nition of security.

The ideas needed to de�ne three-party key distribution
are di�erent from those underlying familiar notions. A key
element of the de�nition is to develop an appropriate model.
Among the environmental characteristics which our model
captures are the adversary's ability to start up new instances
of any of the parties, the possibility that she may gain session
keys, and the possibility that she may corrupt players. A
second de�nitional element is the partner function.

2 Insofar as there were no formal statements of what this protocol
was supposed to do, it is not entirely fair to call it buggy; but the
authors themselves regarded the protocol as having a problem worthy
of �xing [18].

Our protocol's starting point, a pseudorandom function
family, exists if one-way functions exist [14, 11]. Exploiting
techniques of [15] we show (Theorem 7) that the existence
of a secure three-party session key distribution implies the
existence of a one-way function, and so our assumption is
minimal.

1.4 Design for practice

Provably-secure protocols are not usually e�cient. Ours is
an exception to this rule. The protocol presented in this
paper is e�cient in terms of rounds, communication, and
computation. Our protocol is actually simpler than previous
ones in the literature. Earlier solutions, lacking de�nitions
and proofs, often encumbered their protocols with irrelevant
features. Related protocols designed with the same method-
ology retain these advantages.

The above e�ciency was designed into our protocols in
part through the choice of the underlying primitive|namely,
a pseudorandom function. In practice, pseudorandom func-
tions (with the right domain and range) are a highly de-
sirable starting point for e�cient protocols in the symmet-
ric setting. The reason is that beginning with primitives
like DES and MD5 one can construct e�cient pseudoran-
dom functions with arbitrary domain and range lengths,
and these constructions are themselves provably secure given
plausible assumptions about DES and MD5.

1.5 Related work

The most closely related work to the present one is a previous
paper of ours on two-party entity authentication and authen-
ticated key exchange [2], which provided the �rst provably
secure solutions for these goals. This in turn built on the
work of [3, 10] for the same problem. The work of [2] was
the �rst to formalize the notion of instances, and our model,
with the framework of an adversary talking to its oracles, ex-
tends that of [2]. However, the goals treated here and in [2]
are very di�erent. Entity authentication is the process by
which parties can become convinced that they are talking to
one another. Now on top of such a protocol one can often
piggyback a two-party key distribution, but, fundamentally,
entity authentication is simply irrelevant to key distribution
(and conversely). Furthermore, the two-party entity authen-
tication goal |with or without a key distribution| is of no
obvious utility in the three-party setting of this paper.

Many protocols aim to distribute a key whose value
depends only on the initially distributed set of long-lived
keys and on the identities of those who want to have the
shared key. Such key distributions can be non-interactive
and information-theoretically secure. This approach begins
with [5]; additional work includes [19, 6, 1, 16]. In these
works the model does not recognize multiple instances of
players: in e�ect, they distribute long-lived keys given long-
lived keys stored in a more convenient manner.

The classic secret key exchange problem [9] is again en-
tirely di�erent: the adversary there is passive, and there is
no notion of sessions or instances.

It is impossible to survey here the large body of sug-
gested protocols for three-party session key distribution.
One contemporary solution which inuenced our thinking
is IBM's KryptoKnight family of protocols [4]. These avoid

2

many earlier pitfalls, but they still fall short of our de�nition
of correctness.

1.6 Authentication versus key distribution

The tendency to link the entity authentication goal and the
key distribution one is so entrenched that it is worth empha-
sizing that these problems are very di�erent. As explained,
entity authentication is about becoming convinced that you
have been talking to an intended parter; key distribution
is about getting a key to at most the two of you. One of
our contributions is to disentangle these problems and iden-
tify one of them |key distribution| as the \right" goal for
most applications. We comment that a de�nition for three-
party entity authentication can be obtained by modifying
the notion of two-party entity authentication given in [2] (if
desired, this de�nition can then be extended to demand a
key be distributed in the process, mimicking the treatment
of authenticated key exchange [2]). But we believe that the
above is not the best approach. The reason is that entity
authentication is rarely useful in the absence of an associ-
ated key distribution, while key distribution, all by itself, is
not only useful, but it is not appreciably more so when an
entity authentication occurs along side. Most of the time the
entity authentication is irrelevant : it just doesn't matter if
you have been speaking to a given communication partner,
in that by the time you become aware of this fact there will
be no particular reason to believe that that partner is still
\out there," anyway. All that matter is to securely distribute
a key, and then use that key to protect the ensuing session.

2 Preliminaries

Notation. The distributed system we model has N players
whom we give identities I = f1; : : : ;Ng. The number N
may be any polynomial function of the security parameter, k.
Elements of I will be denoted by i; j, or sometimes by A;B.
In addition there is a key distribution center, S| it is not
a member of I, and is assigned identity 0. The adversary E
is not any of the above entities; how she is modeled will be
speci�ed shortly.

If A is a probabilistic algorithm then A(x; y; � � �) de-
notes the probability space which to � assigns the probabil-
ity that A, on inputs x; y; � � � ; outputs �.

We let f0; 1g� denote the set of �nite binary strings and
f0; 1g! the set of in�nite ones. The empty string is written �.
When a, b, c, : : : are strings, by a : b : c : � � � we denote any
natural encoding of these strings such that each constituent
string is e�ciently recoverable from a : b : c : � � � in the context
of its receipt. A function is e�ciently computable if it can be
computed in time polynomial in its �rst argument. We let
\PPT" stand for \probabilistic polynomial time." A family
of distributions fDkgk2N is called samplable if there exists
a PPT algorithm D, called a generator, such that D(1k) is
the distribution Dk. We won't again bother to distinguish
a samplable family of distributions from its generator. A
real-valued function �(k) is negligible if for every c > 0 there
exists a kc > 0 such that �(k) < k�c for all k > kc. A
function is nonnegligible if it is not negligible. We write
a A for choosing a random sample from the �nite set A;
we write s f0; 1g! for choosing an in�nite string s with
each bit equiprobably zero or one.

Protocols. We start o� by specifying the \syntax" of a key
distribution protocol. A three-party key distribution protocol
(or simply a protocol in this paper) is a triple P = (�;	;LL)
of polynomial-time computable functions:

� | speci�es how (honest) players behave;

	 | speci�es how S behaves; and

LL | speci�es the (initial) distribution on

the long-lived keys.

The domain and range of these functions is as follows. The
function � takes as input the following six arguments:

1k | security parameter

i 2 I | identity of sender

j 2 I | identity of (intended) partner

Ki 2 f0; 1g
� | long-lived key of i

conv 2 f0; 1g� | conversation so far

r 2 f0; 1g! | random coin ips

while the value (m; �; �) = �(1k; i; j;Ki;j ; conv; r) returned
by � consists of:

m 2 (f0; 1g� [f�g)2 | messages sent to S & j

� 2 fA;R; �g | the decision

� 2 f0; 1g� [f�g | the private output

We require that the private output be string-valued when
and only when the decision is A. The private output is called
a session key when it is string-valued. We let �m�(�) denote
the �rst two components of �(�), ��(�) the second compo-
nent of �(�), and ��(�) the third component of �(�).

The function 	 takes as inputs the following seven ar-
guments:

1k | security parameter

i 2 I | identity of the initiator

j 2 I | identity of the responder

Ki 2 f0; 1g
� | long-lived key of i

Kj 2 f0; 1g
� | long-lived key of j

conv 2 f0; 1g� | the conversation so far

r 2 f0; 1g! | random coin ips

while m = (mi;mj) = 	(1k; i; j;Ki;Kj; conv; r) has compo-
nents:

mi 2 f0; 1g
� [f�g | message to i

mj 2 f0; 1g
� [f�g | message to j

Finally, the function LL takes as input:

1k | the security parameter

r 2 f0; 1g! | random coin ips

and the value returned by LL(1k; r) is a string K 2 f0; 1g�.
Such a string is called a \long-lived key" (LL-key).

Discussion. Let (m; �; �) = �(1k; i; j; ki;j ; conv; r). Then
the �rst component of m is to be thought of as the string
that i tries to send to S. The second component of m is
what i tries to send to j. Either or both of these may be �,
indicating that i sends no message to that entity. Similarly,
S is permitted to send messages to two di�erent players in
a single round. We use the same �-convention to indicate S
does not want to send a message to either or both player.

The above communication conventions are irrelevant to
our notion of security; for example, one can always turn a

3

protocol P into a protocol P 0 which sends only one message
in each round and which meets our de�nition of security as
long as P does.

The function � is the decision predicate. Its values A,
R and � are supposed to suggest \accept," \reject," and
\no decision yet reached," respectively. The string conv will
be used to record the conversation so far; this will grow as
the conversation progresses, in a manner we are about to
describe.

3 The Model

We now formulate a communication model appropriate for
de�ning authentication and key distribution goals in the dis-
tributed environment. The situation we address is one where
communication between players is entirely controlled by the
adversary. We build on and extend the model of [2].

The adversary is a probabilistic machine E which we
think of as being equipped with an in�nite collection of
oracles| �s

i;j and 	s
i;j, for i; j 2 I and s 2 N. Oracle �s

i;j

models instance s of player i attempting to agree on a shared
session key with player j. Oracle 	s

i;j models instance s of S
in its role of trying to help distribute a key to i and j. At-
tacks that E can can mount are modeled via oracle queries
which E writes on a special tape and to which she gets a
response in unit time. We will �rst formally describe the
kinds of queries and how they are answered; then we discuss
the intuition behind each type of query. (We comment that
oracles maintain state between queries, contrary to typical
usage of this term.)

Running The Protocol. To execute P = (�;	;LL) us-
ing adversary E and security parameter k 2 N, one begins
by making the following initializations, for each (i; j; s) 2
I � I � N: Ki LL(1k), rE f0; 1g

! , c/oins�s
i;j f0; 1g

! ,
c/oins	s

i;j f0; 1g
! , conv�s

i;j �, and conv	s
i;j �. The

experiment proceeds by running E on input (1k; rE). Adver-
sary E may make oracle queries, to be answered as described
in Figure 1. For now, the reader should ignore query type 5;
this query will be explained in Section 4. The remaining
four queries are explained here.

Referring to Figure 1, queries not of the correct syn-
tactic form are answered by �. Referring to query type 4,
by hKi; c/oins�

s
i;j; conv�

s
i;jij;s we mean an encoding of the

strings Ki and c/oins�s
i;j and conv�s

i;j where (j; s) 2 I � N
and there has already been a (SendPlayer; i; j; s; �) query
made by E.3

Explanation. Let us describe the intent behind query
types 1{4. When E writes a query (SendPlayer; i; j; s; x) or
(Reveal; i; j; s) on its query tape, we think of that query as
being answered by the oracle �s

i;j . When E writes a query
(SendS; i; j; s; x) on its query tape, we think of that query as
being answered by 	s

i;j .
Under the de�ned model, all communication is under

the adversary's control. She tells instances (oracles) when
to start; obtains their transmissions; and delivers them as
she chooses to other instances. She delivers messages out of
order and to unintended recipients, concocts messages of her

3 As a minor detail, the string c/oinssi;j is in�nite, and so the encod-

ing should include only the \used" portion of coins, or else it should
be constructed to give e�cient access to each bit of the constituent
strings.

own choosing, and creates as many sessions (new instances)
as she pleases. All these abilities are captured by the queries
(SendPlayer; i; j; s; x) and (SendS; i; j; s; x). These model the
adversary sending messages to individual players and to the
key distribution center. What the adversary gets back from
her query is the response which that entity would generate.
Additionally (see row 1 of Figure 1), when making a Send-
Player query the adversary gets back an A/R/� in order that
she can \see" when an oracle accepts. It would be unrealistic
not to provide the adversary this capability.

If an oracle �s
i;j accepts it will have \inside it" a (pri-

vate) session key, �si;j . We allow the adversary to expose
this key with a (Reveal; i; j; s) query. What does this model?
One of the main purposes of session keys is that the loss of
one should only compromise the session which that key pro-
tects [8, 21]. (Indeed, failure to achieve security in the face
of such a loss of session keys is the basis of the well-known
\bug" of [17].) The session using the key will be using it for
some purpose about which we known nothing. For example,
a protocol may use the session key for message authentica-
tion, and such a protocol would not be wrong to reveal the
session key when the session is over and the key is no longer
useful for the adversary to forge messages of this session.
Since we do not know that the key will not be revealed in
the protocol which uses it, we must model this eventuality
and let the adversary learn selected session keys.

A more severe type of loss is when a player's complete
internal state becomes known to the adversary. This can
happen (in the real world) when E breaks open the \secure
boundary" which protects a player. It also happens when the
player actually is the adversary, or is working for her. To
model this possibility we allow a (Corrupt; i;K)-query, from
which the adversary learns the internal state of player i, and
also substitutes some value K of her choice for the player's
long-lived key Ki. From that point on, S will use the revised
LL-key. If E later wants to modify i's LL-key to some new
one K 0 she can issue a (Corrupt; i;K 0)-query (ignoring the
returned string). Because of these queries a protocol will be
not be considered secure if, for example, an (uncorrupted)
player j leaks Kj if he happens to engage in a conversa-
tion with some player i who has some cleverly chosen Ki.
This capability captures possibilities that may exist for the
adversary in the real world.

Notation. Adopting the oracle language from the
above discussion, we will say that �s

i;j has accepted if
��(1k ; i; j;Ki; conv�

s
i;j; c/oins�

s
i;j) = A; that it is opened if

there has been a (Reveal; i; j; s) query; and that it is un-
opened if it is not opened. We say that i has been corrupted
if there has been a (Corrupt; i; �) query, and it is uncorrupted
otherwise.

To exercise the new language: as we have de�ned an
execution, all the oracles start o� unopened. Initially no or-
acle holds a session key. When an oracle accepts it has a
session key. The adversary could learn this session key in a
couple ways. She could make a reveal query |which is an
attack on a particular instance �s

i;j| and that would result
in her getting back just the session key of the indicated ora-
cle. Or she could make a corrupt query |which is an attack
directed against all instances �t

i;j of a player i| resulting
in her getting back all of the state of all sessions of player i.
From this state the adversary can calculate the session keys
of all instances of i which hold session keys.

4

On query of: Return: And then set:

1 (SendPlayer; i; j; s; x) �m�(1k; i; j;Ki; conv�
s
i;j ; c/oins�

s
i;j) conv�s

i;j conv�s
i;j : x :m

2 (SendS; i; j; s; x) 	(1k; i; j;Ki;Kj; conv	
s
i;j) conv	s

i;j conv	s
i;j : x :m

3 (Reveal; i; j; s) ��(1k ; i; j;Ki; conv�
s
i;j; c/oins�

s
i;j)

4 (Corrupt; i;K) hKi; c/oins�
s
i;j; conv�

s
i;jij;s Ki K

5 (Test; i; j; s) Choose at random a bit b. If b = 0 return � Sn(1k);
if b = 1 return � ��(1k; i; j;Ki; conv�

s
i;j ; c/oins�

s
i;j)

Figure 1: The queries which E can ask of its oracles.

Benign Adversaries. There is no communication in our
model without an adversary. We model reliable communi-
cation by considering a benign adversary, one who faithfully
relays ows just like a reliable channel. Speci�cally, to every
(i; j; s; t; u) we associate an adversary called the (i; j; s; t; u)-
benign adversary which is deterministic and con�nes her ac-
tions to faithfully conveying ows between (�s

i;j;�
t
j;i;	

u
i;j),

beginning with �s
i;j . Details are omitted.

Transcript. We need some specialized language to talk
about the manifest communication in a network. The re-
veal and corrupt queries do not correspond to communica-
tion among players, but the SendPlayer and SendS queries
do. Thus we de�ne a communication record as a pair hq; yi,
where q is a string (SendPlayer; i; j; s;x) or (SendS; i; j; s; x),
and y is an arbitrary string. A transcript is a sequence of
communication records. So far, this is just a syntactic no-
tion. The set of all well-formed (syntactically-correct) tran-
scripts is denoted T . Note that T depends neither on the
protocol nor on the adversary. In a given execution of E
running P with security parameter k, there will be a par-
ticular transcript T 2 T at the end of this execution, where
the i-th communication record in T is the i-th SendPlayer or
SendS query together with its response.

A Single Model For Many Goals. We have not yet
de�ned any particular goal; we have only speci�ed the ad-
versarial model in which some goal might be formulated. In-
deed, this same model can be used for many authentication
and key-distribution goals.

4 De�nition of Security

To be considered secure a key distribution protocol must
protect the session keys which it distributes. But it must do
something more: the protocol better distribute those keys!
For example, the protocol which does nothing distributes all
of its keys quite securely|but it is not a reasonable mecha-
nism. To eliminate such nonsense we start o� by demanding
a basic \validity" property of any key distribution protocol.

4.1 Validity

To be a reasonable key distribution protocol the requirement
is made that when communication channels are reliable, par-
ties i and j, executing the protocol with S, should end up
with a common key; moreover, this key should be distributed
according to the desired distribution on session keys. More
formally, a protocol P = (�;	;LL) is called valid if for all
i; j 2 I and s; t; u 2 N, when the protocol is run using the
(i; j; s; t; u)-benign adversary, oracles �s

i;j and �t
j;i always

accept, and each outputs the same session key. When Sn
is a generator we say that P is Sn-valid if these keys are
Sn(1k)-distributed when the security parameter is k. We
emphasize that our notion of security depends on Sn; we will
be de�ning a notion that \a protocol P securely distributes
Sn-distributed keys when : : :"

4.2 Protecting fresh session keys

We might like to formalize that, for a key distribution pro-
tocol to be good, the adversary must be unable to learn
anything about the distributed session keys. But this is too
much to hope for: after all, the type of adversary we have
modeled can learn a session key just by issuing an appropri-
ate query. The best we can hope for is that the adversary
doesn't learn anything about a session key unless she explic-
itly asks for it. But asked whom (what oracle)? Certainly if
the adversary asks �s

i;j for its session key then the adversary
learns the session key of �s

i;j. But a key distribution proto-
cols is supposed to distribute keys, so presumably there may
exist some other oracle �t

j;i the loss of whose session key
compromises that of �s

i;j. It is this partner of �
s
i;j which we

now turn our attention to de�ning.

The Partner Function. Intuitively, the partner of an
oracle is that other oracle with which it shares a key. Not
every oracle will have a partner: for example, an oracle which
never comes to hold a session key will never get a partner.
In fact, even an oracle that does come to have a session
key might not have a partner. To see this, consider the
adversary who runs a protocol faithfully, except that she
delivers messages one at a time and halts as soon as some
oracle accepts. This (accepting) oracle holds a session key,
but it can't have a partner (an oracle which who holds a
matching key) since no other oracle holds a key. Perhaps
the accepting oracle would get a partner if one more message
was properly delivered|but this event may never happen.

It is convenient to de�ne the partner of an oracle in a
somewhat \syntactic" way. Roughly said, a partner function
is a map f which (on a given execution) for each oracle �s

i;j

\points" to its partner (if any) �t
j;i. Formally, a partner

function is a polynomial-time map f : T �I�I�N! N�f�g.
We write fsi;j(T) instead of f(T; i; j; s).

Fix a protocol P , a partner function f , an adversary E,
and a security parameter k. Run E. Let it terminate with
some transcript, T . If fsi;j(T) = t 2 N then we shall call
oracle �t

j;i the partner to �s
i;j. If fsi;j(T) = � we say that

�s
i;j is unpartnered.

Note that the partner of an oracle �s
i;j is an oracle of

the form �t
j;i. It is unacceptable that an oracle representing

an instance of i trying to come to a session key with an

5

instance of j should be partnered with an oracle other than
an instance of j trying to come to a session key with an
instance of i.

We comment that our de�nition of a partner function
ensures that the adversary \knows" which is the partner of
any oracle. While one might have enlarged the domain of f
in various ways, it is important to preserve this condition.
Since a protocol will be deemed secure only if there exists
a partner function with a certain property, demanding that
the partner function have a particularly simple form, as we
have done, only strengthens our notion of security.

We note that this de�nition of a partner function is less
stringent than the idea of partnering by matching conversa-
tions given in [2]. In the latter, the partner of an oracle is
identi�ed by looking at the bits which ow among the or-
acles. Such a notion is not possible here, since we wish to
de�ne key distribution independently of authentication.

Freshness. Fix a protocol P , a partner function f , an
adversary E, and a security parameter k. Run E. Let it
terminate with some transcript, T . Now ask: which are the
oracles which hold a session key about which the adversary
should not know? Our answer is given in the following de�-
nition:

De�nition 1 Oracle �s
i;j holds a fresh session key (or �

s
i;j is

fresh) if, at the end of the execution, the following are true:

� �s
i;j has accepted;

� �s
i;j is unopened;

� �s
i;j 's partner (if it has one) is unopened; and

� Players i and j are uncorrupted.

Fresh oracles correspond to those for which the adversary
cannot know the contained session key by \trivial" means.
If an oracle holds a fresh session key, we need to protect it.
Recall for the above de�nition that \unopened" and \un-
corrupted" are technical terms, de�ned in Section 3. We
emphasize that freshness depends on the partner function f .

Test Queries. Now we are ready to formalize the secrecy
of fresh keys. We do this along the lines of the de�nition of
polynomial security of encryption [12]. We emphasize that it
is not enough to say that the adversary doesn't know fresh
session keys; we expect all properties of these keys to be
well-hidden, too.

Fix a generator Sn and a partner function f . We aug-
ment the experiment of running P with E on security pa-
rameter k as follows. There will be one more initializa-
tion: b f0; 1g, and there will be one new type of query,
(Test; i; j; s). This query must be adversary's last query, and
it must be asked of a fresh oracle, �s

i;j . The query is an-
swered as speci�ed in Figure 1, query type 5: depending on
the value of b, we either return a random point drawn from
Sn(1k), or else we return the session key which the adversary
is indicating. The adversary will be trying to guess which of
these two possibilities just happened.

After making �nal (Test) query the adversary outputs
a bit, guess, which we think of as her guess of the bit b. Let
Good-Guess be the event that guess = b. The quantity we are
interested in is the advantage E has over random guessing.
We de�ne this advantage by

Adv
E
P;f;Sn(k) = 2 � Pr [Good-Guess]� 1:

The probability is over everything in the experiment we have
described: the random coins of the key generator, the ad-

versary, the �s
i;j oracles, the 	

s
i;j oracles, and the bit b. The

advantage has been scaled to be in the range [�1; 1]. This
scaling is only signi�cant in an \exact" treatment of security;
here we give an asymptotic treatment.

4.3 Main de�nition

Fixing a particular partner function f induces a notion of
which keys will be considered fresh. We say a protocol pro-
tects session keys if there is some partner function under
which no polynomial time adversary can succeed in saying
something intelligent fresh session keys.

De�nition 2 Let Sn be a generator. A protocol P is a se-
cure three-party key distribution, distributing Sn-distributed
keys, if it is Sn-valid and there is a partner function f such
that for every PPT adversary E, AdvE

P;f;Sn(�) is negligible.

When Sn is clear or irrelevant, we omit mention of it. If P
is a protocol and f is a partner function as above, we will
say that f witnesses the security of P .

Remark. The degree of protection of the distributed ses-
sion key is very strong. Many protocols in the literature fail
to meet this de�nition because, for example, the distributed
session key is used to encrypt or authenticate certain ows
of the key distribution protocol itself. Not only will a proto-
col P � which makes such \premature" use of the distributed
session key fail to meet our de�nition, but, in fact, it will
be possible to construct a protocol Q which is secure follow-
ing an \ideal" session key distribution but which is insecure
following P �.

5 A secure key distribution protocol

Basic Tools. We begin with some basic tools. A mes-
sage authentication scheme (private key signature scheme)
is a pair of polynomial-time algorithms (MAC;VF), the �rst
of which may be probabilistic. The function MAC takes a
message x, a key a, and random coins r, and it produces a
\message authentication code" (tag) MACa(x; r). The func-
tion VF takes a message x and a key a and it returns a bit
VFa(x), with 1 standing for accept and 0 for reject. We
require that for any � output with positive probability by
MACa(x), it is the case that VFa(x; �) = 1.

For security we adapt the de�nition of [13]. An adver-
sary E for a MAC scheme is an algorithm with a MACa(�)
oracle and a VFa(�) oracle. De�ne successE(k) as the prob-
ability that EMACa(�);VFa(�)(1k ; rE) �nds an x� for which
VFa(x

�) = 1 for x� unasked of MACa(�). The probability is
taken over a f0; 1gk , rE f0; 1g

! , and r1; r2; : : : f0; 1g
!,

and then answering the i-th MAC query as follows: if the
question was x, return MACa(x;ri). The MAC scheme is se-
cure if for every polynomial-time adversary E, successE(k)
is negligible.

A pseudorandom function family ffa(x)g makes a good
MAC: de�ne MACa(x) = fa(x) and de�ne VF(x; �) by the
predicate (� =MACa(x)) [11].

A (private key) encryption scheme is a pair of
polynomial-time functions (Ea(x);Da(y)), the �rst of which
is probabilistic and the second of which is deterministic. We
may explicitly indicate the coins of E by writing Ea(x; r).
We require that D(y) = x for every y output with positive
probability by Ea(x).

6

For security we adapt the de�nition of [12]. For any
adversary E and generator G we consider the experiment
de�ned as follows. Choose a f0; 1gk, � f0; 1g, �0 G(1k),
�1 G(1k), and rE f0; 1g!. Sample � Ea(��) and run
EEa(�)(�0; �1; �; rE) using a (probabilistic) oracle for Ea(�).
We say that adversary E succeeds if she output �. The
encryption scheme is secure if for every generator G and
every polynomial time adversary E, the adversary succeeds
with probability � 0:5 + �(k) for some negligible function �.

Secure (symmetric) encryption is straightforward given
a pseudorandom function family: simply de�ne Ea(x; r) =
(r; fa(r)�x).

The Protocol 3PKD. For any generator Sn, any en-
cryption scheme (E;D), and any message authentication
scheme (MAC;VF), we specify a key distribution protocol
P = 3PKD[(MAC;VF); (E;D); Sn]. The long-lived key
generator, LL(1k; r), returns a uniformly distributed 2k-bit
string Ki which we view as a pair (K

enc
i ;K

mac
i) of keys for

encrypting and signing, respectively. We assume that each
player i 2 I is associated to a unique k-bit string, which we
denote by i itself. Instructions for the players and for S are
described in a pictorial form in Figure 2. We describe the
meaning of this �gure below.

In Step 1, party A chooses a random k-bit challenge RA

and sends it to B. In Step 2, party B chooses a random
k-bit challenge RB and sends RA :RB to S. In Step 3, S
runs generator Sn(1k) to get a session key � which he will
distribute. Then, using coins rA (resp. rB) selected at ran-
dom, S probabilistically encrypts � under A's encryption key
K

enc
A (resp. B's encryption key K

enc
B) to get ciphertext �A

(resp. �B). Then S computes �A (resp. �B), the MAC
under key K

mac
A (resp. K

mac
B) of the string A:B :RA : �A

(resp. A:B :RB : �B). (Coins are ipped if the MAC re-
quires this.) Here A and B denote the k-bit names of these
players. In ow 3A (resp. 3B) S sends A (resp. B) the mes-
sage �A : �A (resp. �B : �B). In Step 4A (resp. 4B) Party A
(resp. B) receives a message �0A : �

0
A (resp. �0B : �

0
B) and ac-

cepts, with session key DKenc
A

(�0A) (resp.DKenc
B

(�0B)), if and

only if VFKmac
A

(A:B :RA : �
0
A; �

0
A) = 1 (resp. VFKmac

B
(A:

B :RB : �0B; �
0
A) = 1). This completes the protocol descrip-

tion. The formal de�nitions of � and 	 are readily con-
structed from this.

Main Theorem. Our main result is given by the following
theorems.

Theorem 3 Let (MAC;VF) be a secure message au-
thentication scheme, let (E;D) be a secure encryption
scheme, and let Sn be a generator. Then protocol
3PKD [(MAC;VF); (E;D); Sn] is a secure key distribution
protocol, distributing Sn-distributed keys.

The proof appears in Appendix A. Using well-known results
[14, 11] we obtain the following corollary.

Corollary 4 If there exists a one-way function then for any
generator Sn there exists a secure key distribution protocol,
distributing Sn-distributed keys.

Comments. The speci�cs of our formulation have made it
unnecessary for A to send her name in ow 1, or for B to
send the names A and B in ow 2. In a \real" protocol,
these \hints" would normally accompany those ows.

In a real protocol, one might prefer to employ only
A$ B $ S connectivity; in this case ow 3A should be
\routed through" B. (In other words, the protocol 3PKD

is changed so that S sends only one message, to B, and B
forwards half of this message along to A.) Alternatively,
one might prefer S $ A$ B connectivity, as in [17, 20]); in
this case the protocol 3PKD is changed so that messages
are routed as A ! B ! A ! S ! A ! B. Changes in a
protocol's message routing (to accommodate a desired con-
nectivity graph) do not impact a protocol's provable security
in any way. We thus suggest that protocols for alternative
connectivity models ought di�er only in their message rout-
ing.

Regardless of the routing variant one assumes, proto-
cols in the literature for (timestamp-less) three-party session
key distribution typically have an extra ow or when two
compared to the same-routed version of 3PKD. The extra
communication was usually intended for entity authentica-
tion. Our protocol has fewer ows simply because it does
not have entity authentication as a goal. See Section 1.6 for
why we have made this choice. Also see the remark at the
end of Section 4.3 to see why any additional ows for entity
authentication should not be a challenge-response based on
the distributed session key.

6 Basic properties

This section describes basic properties of a secure key dis-
tribution protocol. Proofs are omitted.

Structure Of The Partner Function. One expects a
number of characteristics for the partner function which were
not explicitly demanded in its de�nition. The following the-
orem collects up some such properties which may always be
assumed without loss of generality.

Theorem 5 Let P be a secure protocol. Then there exists
a partner function f which witnesses this and which has the
following additional properties:

(1) If T0; T 2 T with T0 a pre�x of T then fsi;j(T0) 2
f�; fsi;j(T)g.

(2) Suppose fsi;j(T) = t and let T0 2 T be one record longer
than the longest pre�x of T for which fsi;j = �. Then the
last record hq; yi of T0 is a Send query whose response
indicates that �s

i;j has accepted.

(3) Suppose fsi;j(T) = t. Then f tj;i(T) 2 f�; sg.

The �rst condition says that an oracle's partner becomes
de�ned at most once. The second condition says this can
only happen right after an oracle accepts. The �nal con-
dition says that if �s

i;j is partnered to �t
j;i, then if �t

j;i is
partnered to anybody, that anybody is �s

i;j .

Uniqueness Of Partner. If both f and f̂ are partner
functions for a secure key distribution protocol P , then it
seems as though f and f̂ ought to be \essentially" the same.
In particular, whenever one partner function names an oracle
the other partner function should name the same oracle, if
it names any oracle at all.

Theorem 6 Let P be a secure protocol and let f and f̂
be partner functions which witness this. Let Tr be the
random variable which returns the �nal transcript. Let
DifferentPartners(k) be the event there exists an i; j 2 I,
s 2 N, such that fsi;j(Tr) 6= � and f̂si;j(Tr) 6= � and fsi;j(Tr) 6=

7

Flow 1. A! B: RA

Flow 2. B ! S: RA :RB

Flow 3A. S ! A: EKenc
A

(�; rA) : MACKmac
A

(A :B :RA :EKenc
A

(�; rA))

Flow 3B. S ! B: EKenc
B

(�; rB) : MACKmac
B

(A:B :RB :EKenc
B

(�; rB))

Figure 2: A terse representation of protocol 3PKD. For a fuller description, see the accompanying text.

f̂si;j(Tr). Then �(k) = Pr [DifferentPartners(k)] is negli-
gible.

Assumption Minimality. For D a distribution on strings
let hD be the probability mass of the most probable string
in D. A family of distributions Dk is called non-degenerate
if for some c > 0 we have that 1 � hDk

> k�c for all large
enough k. The following theorem can be established using
techniques of [15].

Theorem 7 Suppose there exists a secure key distribution
protocol which distributes Sn(�)-distributed keys, where Sn is
non-degenerate. Then there exists a one-way function.

References

[1] A. Beimel and B. Chor, \Interaction in key distri-
bution schemes," Crypto 93.

[2] M. Bellare and P. Rogaway, \Entity authentica-
tion and key distribution," Crypto 93.

[3] R. Bird, I. Gopal, A. Herzberg, P. Janson,

S. Kutten, R. Molva and M. Yung, \Systematic de-
sign of two-party authentication protocols," Crypto 91.

[4] R. Bird, I. Gopal, A. Herzberg, P. Janson,

S. Kutten, R. Molva and M. Yung, \The Kryp-
toKnight family of light-weight protocols for authenti-
cation and key distribution," IEEE/ACM T. on Net-
working, 3(1), February 1995.

[5] R. Blom, \An optimal class of symmetric key genera-
tion systems," Eurocrypt 84.

[6] C. Blundo, A. De Santis, A. Herzberg, S. Kut-
ten and M. Yung, \Perfectly-secure key distribution
for dynamic conferences," Crypto 92.

[7] M. Burrows, M. Abadi and R. Needham, \A logic
for authentication," ACM Transactions on computer
systems, Vol. 8, No. 1.

[8] D. Denning and G. Sacco, \Timestamps in key
distribution protocols," Communications of the ACM,
Vol. 24, No. 8, pp. 533{536, 1981.

[9] W. Diffie and M. E. Hellman, \New directions in
cryptography," IEEE Trans. Info. Theory IT-22, 644-
654 (November 1976).

[10] W. Diffie, P. van Oorschot and M. Wiener, \Au-
thentication and authenticated key exchanges," De-
signs, Codes and Cryptography, 2, 107{125 (1992).

[11] O. Goldreich, S. Goldwasser and S. Micali,
\How to construct random functions," Journal of the
ACM, Vol. 33, No. 4, 210{217, (1986).

[12] S. Goldwasser and S. Micali, \Probabilistic en-
cryption," Journal of Computer and System Sciences
Vol. 28, 270-299 (April 1984).

[13] S. Goldwasser, S. Micali and R. Rivest, \A digi-
tal signature scheme secure against adaptive chosen-
message attacks," SIAM Journal of Computing,
Vol. 17, No. 2, 281{308, April 1988.

[14] J. H�astad, R. Impagliazzo, L. Levin, and

M. Luby, \Construction of a pseudo-random gener-
ator from any one-way function." Manuscript. Earlier
versions in STOC 89, STOC 90.

[15] R. Impagliazzo and M. Luby, \One-way func-
tions are essential for complexity based cryptography,"
FOCS 89.

[16] T. Leighton and S. Micali, \Secret-key agreement
without public-key cryptography," Crypto 93.

[17] R. Needham and M. Schroeder, \Using encryp-
tion for authentication in large networks of comput-
ers," Communications of the ACM, Vol. 21, No. 12,
993{999, December 1978.

[18] R. Needham and M. Schroeder, \Authentication
revisited," Operating Systems Review, Vol. 21, No. 1,
p. 7, January 1987.

[19] A. Shamir, \Identity-based cryptosystems and signa-
ture schemes," Crypto 91.

[20] J. Steiner, C. Newman and J. Schiller, \Ker-
beros: an authentication service for open network sys-
tems," Proceedings of the USENIXWinter Conference,
pp. 191{202, 1988

[21] Y. Yacobi and Z. Shmuely. \On key distribution sys-
tems." Crypto 89.

A Proof of the Main Theorem

This section provides a sketch of the proof of Theorem 3.

Let E be an adversary who makes Q = Q(k) oracle calls.
We say that the i-th one of these calls occurs at time i.

Simplifying Lemmas and Assumptions. The real exper-
iment refers to the experiment of running the protocol us-
ing E. The corresponding probability function will be de-
noted Pr[�]. Other probability functions will be introduced
as needed.

We say that player A is active if there exist B and s such
that some query was made to one of the following oracles:
�s
A;B;�

s
B;A;	

s
A;B ;	

s
B;A. Similarly, a session number s 2 N

is active if there exist A;B such that a query was made to
one of the following oracles: �s

A;B ;	
s
A;B.

We will make some simplifying and wlog assumptions. First,
the (identities of the) set of active players are in the range
1; : : : ;Q. (At most Q di�erent players can be active, and by
renaming we can make this assumption wlog). Similarly, the
active session numbers are in the range 1; : : : ;Q.

An initiator oracle is one who plays the role of A in the
description of the protocol. That is, it sends out the �rst

8

ow. A responder oracle is one who plays the role of B| it
receives a ow to start.

It is convenient to use in our proof a stronger property of
encryption than that given in our de�nition. Let (E;D) be
an encryption scheme. Recall in the de�nition we choose a
key a and a bit � at random, and provide the eavesdropper
with: (1a) an encryption � Ea(��) of �� under a; and
(1b) oracle access to the encryption algorithm Ea. The job of
the adversary is to predict �. We now consider an augmented
adversary called a multiple eavesdropper, who, in addition,
gets to the above gets: (2a) an encryption � Eb(��) of ��
under an independently chosen key b; and (2b) oracle access
to Eb. We will need the fact that the extra information does
not help:

Lemma 8 If (E;D) is a secure encryption scheme then any
PPT multiple eavesdropper has negligible advantage.

The above property of secure encryption scheme is standard,
and we omit the proof.

Authenticity Of Flows. We begin by establishing some
properties about what the oracle ows (almost always) look
like in the real experiment when an oracle accepts. These
properties depend only on the security of the message au-
thentication scheme; the encryption scheme itself is com-
pletely irrelevant.

The intuition is as follows. Suppose an initiator oracle �s
A;B

accepts. For this to happen, the second ow has to look like
� :� where � is a MAC of A:B :RA : � (� is a ciphertext).
We claim it (almost certainly) must be that some S-oracle
	u
A;B at some time produced � (with a corresponding MAC).

If not, we would be able to forge authentication tags. The
formal statements follow, �rst for this case of an initiator
oracle (as we have just described), and then for a responder
oracle.

De�ne event HAccIsA;B (\honest, accepting initiator") as true
if player A is uncorrupted and oracle �s

A;B accepts in the role
of an initiator.

De�ne event AuthIsA;B (\authenticity for initiator") as true
if there exist times �1 < �2 < �3, strings RA; �;�; �

0,
and a session number u 2 N such that the following is
true. At time �1, oracle �s

A;B was started (in the role of
initiator) and output nonce RA. Then, at time �2, ora-
cle 	u

A;B (was given some input and) output the message
� :� for A (simultaneously, it output some message for B
which we do not care about). Then, at time �3, oracle
�s
A;B received the ow � :�0 and accepted (which implies

VFKmac
A

(A:B :RA : �; �
0) = 1).

Lemma 9 For every A;B 2 I and every s 2 N it is the case
that Pr[HAccIsA;B ^ :AuthI

s
A;B] is negligible.

Proof: Let A;B; s be such that the probability
Pr[HAccIsA;B ^ :AuthI

s
A;B] is non-negligible. We provide

a forging algorithm F to break the message authentication
scheme. Algorithm F has oracle access to MACa(�) and
VFa(�) where a was chosen at random. Algorithm F be-
gins by choosing MAC and encryption keys for all players,
except that no MAC key for A is chosen. Now it starts
executing the experiment of running the protocol using E.
In the execution, if an authentication tag under the MAC
key of A is needed (this will be the case for ows output

by oracles of the form 	u
A;j or 	

v
i;A) then F computes it by

appealing to the oracle MACa. Similarly for veri�cation. If
at any point �s

A;B accepts or A is corrupted then the execu-
tion stops. (We wouldn't be able to continue the simulation
if A is corrupted because we can't return a). Else, it stops
whenever the simulation of E is complete. One can check
that the \view" of E in this experiment is the same as that
in the original one at any point before the experiment stops.
Note that times in which the the experiment stops due to
�s
A;B being corrupted are contributing nothing to HAccIsA;B.

Suppose �s
A;B is uncorrupted and has accepted. This means

that at some time �1 it output some RA, and at some time
�3 > �1 it received some ow � :�0 which it accepted. Let
y = A:B :RA : �. The acceptance implies that VFa(y; �

0) =
1, i.e. �0 was a valid MAC for the string y. This (y; �0)
is output by F as his (attempted) forgery. Now suppose
AuthIsA;B is false. To show that (y; �0) is a successful forgery
we need to check that y was (with high probability) never
queried of MACa(�) during the experiment.

The experiment stops at time �3 (since we stop when �s
A;B)

accepts, so the check need only pertain to times prior to this.
AuthIsA;B being true means y was never output by a 	 oracle
in between times �1 and �3, which means a query of the form
RA :RB was not made of any 	 oracle in this period. So no
MAC query of y was made between times �1 and �2. Finally,
since RA was a random k-bit string produced at time �1 by
an (uncorrupted) oracle, the probability that RA :RB was
queried of a 	 oracle before time �1 is at most Q(k) � 2�k.
Putting everything together we can conclude that F succeeds
in forgery with non-negligible probability.

We can proceed analogously for responder oracles, de�ning
event HAccRtB;A (\honest, accepting initiator") and event
AuthRtB;A (\authenticity for responder")| the de�nitions
are omitted due to lack of space. Then just as above one
can show:

Lemma 10 For every B;A 2 I and every t 2 N it is the case
that Pr[HAccRtB;A ^ :AuthR

t
B;A] is negligible.

The Main Algorithm. We now present a multiple eaves-
dropperM which will be used later to show that the protocol
protects session keys. Let us begin by giving some intuition
about what M is trying to do.

Input to M are strings �0; �1 to be viewed as chosen accord-
ing to Sn. Also, �;� which are the encryptions of �� under
a; b, respectively, � to be thought of as chosen at random. M
has oracle access to Ea; Eb, and is trying to predict �. Algo-
rithm M will run E. Oracle queries of E will be answered by
M| the latter will itself \simulate" all the oracles to which
E has access.

We know that eventually E points to a fresh oracle (with
respect to a partner function whose de�nition is discussed
below) and makes a test query. For example, say she points
to a responder oracle �t

B;A. We would like that the encryp-
tion of the session key of this oracle be �. We will then
return either �0 or �1 in the test query, so that E's answer
can be taken as prediction for �. To be able to implement
this paradigm, we must be able to have � be the b-encrypted
session key. By the previous lemmas we know the encrypted
session key must have come from some 	-oracle. We pick
a session u at random and bet one the oracle 	u

A;B . When

9

this oracle must speak, it distributes our special encrypted
session keys (provided as M 's input) instead of its choosing
random ones.

The di�culty is forM to be able to simulate the execution of
E without M 's having the ability to decrypt under a; b. This
means we cannot answer reveal queries pertaining to our
special encrypted keys �;�. The algorithm below will simply
Fail in those cases. Same for corrupt queries. Later, we will
see that by making the right choice of partner function and
using the lemmas of the previous section, we can prove that
failure is su�ciently unlikely.

Algorithm MEa(�);Eb(�)(�0; �1; �;�).

Machine E picks A;B 2 f1; : : : ;Qg at random. It then
picks u 2 f1; : : : ;Qg at random (a session number for S).
For i 2 f1; : : : ;Qg � fA;Bg pick encryption keys K

enc
i at

random. Set K
enc
A = K

enc
B = �. For all i = 1; : : : ;Q pick

MAC-keys K
mac
i at random. Now for all i = 1; : : : ;Q let

Ki = (K
enc
i ;K

mac
i). Although K

enc
A is formally �, think of

it, intuitively, as being a. Similarly K
enc
B is, intuitively, b.

Although M does not have these keys in its possession,
it does have oracle access to the corresponding encryption
functions, and will, in the simulation, give E the impression
that K

enc
A = a and K

enc
B = b.

Algorithm M starts executing the experiment of running
the protocol using E. Algorithm M makes the necessary
random choices (coins of E and of all oracles) and initial-
izations (conversation variables) as in the real experiment.
Now she starts running E. Oracle queries of E are answered
as follows.

(1) (SendPlayer; i; j; s;x) | Compute the �rst two compo-
nents (outgoing message m and decision �) of �s

i;j ex-
actly as speci�ed by the protocol. This is possible be-
cause this answer only requires the MAC-key of i, which
is available to M .

(2) (SendS; i; j; v; x) | It must be the case that 	v
i;j has

received x = RA : RB, for some RA;RB . If (i; j; v) =
(A;B; u) then M sets �vi;j = � and �vj;i = �. Else it
picks a session key �vi;j at random by running Sn(1k).
Now:

If i 6= A then M has K
enc
i and can encrypt �vi;j by

applying EKenc
i

. Else, M encrypts �vi;j by making

an oracle call to Ea. The result, in either case, is
called �vi;j .

If j 6= B then M has K
enc
j and can encrypt �

by applying EKenc
j

. Else, it encrypts � by mak-

ing an oracle call to Eb. The result, in either case,
is called �vj;i.

Now the appropriate MACs are computed (M has all
keys for this) and the two appropriate outputs are made
(one ow to i, another to j), according to the protocol.

(3) (Reveal; i; j; s) where �s
i;j is an initiator. | We may

assume �s
i;j has accepted. If the last ow �s

i;j received
had the form � :�, for some �, then output Fail and
halt. Else, let : � be the last ow received by �s

i;j . If
 = �vi;j for some v then return �vi;j . Else output Fail
and halt.

(4) (Reveal; j; i; t) where �t
j;i is a responder. | We may

assume �t
j;i has accepted. If the last ow �t

j;i received

had the form � : � then output Fail and halt. Else, let
 : � be the last ow received by �t

j;i. If = �vi;j for
some v then return �vi;j . Else output Fail and halt.

(5) (Corrupt; i; K) | If i 2 fA;Bg then output Fail and
halt. Else, answer, and update, Ki, as in the real ex-
periment. All the information to do this is available to
M .

(6) (Test; i; j; s) where �s
i;j is an initiator. | If (i; j) 6=

(A;B) then output Fail and halt. Else give �0 to E.
Adversary E makes a prediction �0 (where, recall \0" is
a bet of \real session key" and 1 is a bet of \random
point in Sn(1k)"). Algorithm M outputs (as its own
prediction) this same bit �0, and then it halts.

(7) (Test; j; i; t) where �t
j;i is a responder. | If (j; i) 6=

(B;A) then output Fail and halt. Else give �0 to E.
Adversary E makes a prediction �0 which M outputs
and halts.

The Partner Function. We de�ne the partner function
f which witnesses the security of the protocol. The value of
fsi;j(T) will be � except where we now indicate.

The partner of a responder oracle: Look at the �rst two
records of T associated to queries of �s

i;j . Suppose that the
�rst of the two indicated records represents �s

i;j in its role
of a responder oracle|getting a query Rj. Suppose that the
second of the indicated records shows �s

i;j accepting. If both
of these are so, then look to see if there is a unique t such
that T indicates �t

j;i generating a question of Rj. If so, set
fsi;j(T) = t.

The partner of an initiator oracle: This case is just a little
more complicated. Again, look at the �rst two records of T
associated to queries of �s

i;j. Suppose that the �rst of these
two records represents �s

i;j in its role of initiator oracle: �s
i;j

got the question � and gave an answer we denote Ri. Sup-
pose that the second record indicated above shows a query
(yi; �i), getting a response (�;A). If both of these are so,
then look to see if T uniquely speci�es some 	u

i;j sending
out a message of the form (yi; �

0
i), for some �0i. Look to see

if this message was in response to some query of the form
i : j :Ri :Rj, for some Rj . If so, then look to see if there is a
unique t such that an oracle �t

j;i generated a message of the
form i : j :Ri :Rj. If yes, set f

s
i;j(T) = t.

Proof Of Protection Of Session Keys. We assume
that the advantage AdvE

P;f;Sn(�) of the adversary in the real
experiment is non-negligible, and consider the following ex-
periment, which we call Experiment X. Let a; b f0; 1gk be
random, and let �0; �1 be drawn randomly according to Sn.
Flip a coin to get � and let � Ea(��) and � Eb(��). Run
machine M(�0; �1; �; �) with oracle access to the encryption
functions Ea(�);Eb(�). Machine M is trying to predict �.

We will now give a very high level argument that Ex-
periment X yields success with non-negligible probabil-
ity, contradicting the security of the encryption scheme
(cf. Lemma 8). This will complete the proof.

Suppose that in the real experiment, �t
B;A is the oracle

pointed to, and it is a responder oracle. Since �t
B;A is fresh,

both A and B are uncorrupted. By Lemma 10 (applies since
B is uncorrupted and has accepted) we know that except
with negligible probability, the last ow to this oracle was

10

authentic in the sense that the ciphertext in it emanated
(with a correct MAC) from some 	u

A;B .

Now turn to Experiment X. Our random choices of A;B; u
in algorithm M imply that with probability at least 1=Q3

we have have \hit" the correct values. Now let us argue the
failure probability is low.

Look at some �s
A;B. Suppose it accepts. By Lemma 9 (ap-

plies since A is uncorrupted) the ow it receives comes from
some 	v

A;B . If v = u (this is a crucial step) we can check
that �s

A;B is the partner of �t
B;A under f , so the freshness

of �t
B;A implies no reveal query was made of �s

A;B, and thus
algorithm M will not fail. On the other hand if v 6= u then
a reveal query may be made, but M can answer it. So again
M will not fail. We can put all this together to argue that
Experiment X is successful non-negligibly often.

The case where the oracle pointed to is an initiator is omit-
ted.

11

