Cryptographically Generated IPv6 Addresses (CGA)

Basic idea:

Interface Id = hash (Public Key)

The public key is used to authenticate messages sent from the CGA address.

- → Proof of address ownership without security infrastructure.
- Prior work: draft-roe-mobileip-updateauth, draft-montenegro-sucv, draft-nikander-ipng-pbk-addresses, draft-moskowitz-hip
- Covered by IPR

Problems

- 64 bit limit for hash length
 - eventual failure because of Moore's law
 - pre-computation attacks (2^64 memory)
- Detailed formats and algorithms missing
- Drafts incompatible with each other and with standard authentication protocols

draft-aura-cga-00

- Fully specified address formats and addressgeneration and verification algorithms
- The 64-bit limit effectively removed:
 - security parameter (Sec)
 - → cost of generating an address multiplied by 2^{12*Sec}
 - → cost of attacks increased from ~2⁶² to 2^{59+12*Sec}
 - cost of authentication remains constant.
- CGA address indicated by g=1, u=1 (not essential but allows mixing of authenticated and unauthenticated nodes)

CGA Address Format

CGA Address Format

Hash2 = h (Public Key, Modifier)

New requirement: Modifier must be chosen so that Hash2 begins with 12*Sec zero bits.

Two CGA Parameter Formats

1. Certificate format:

- Public key and parameters stored in a self-signed X.509 certificate _ Easy to use in certificate-based authentication protocols
- New certificate extension contains the parameters: Modifier, Routing Prefix, Collision Count

2. Optimized (short) format:

- Concatenation of the public key and parameters
- Public key + 29 bytes
- Verifier needs: signed message (e.g. NA), source IP address, and parameters in either format