INTERNET-DRAFT Danny McPherson draft-ietf-idr-bgp4-experience-protocol-01.txtArbor Networks Keyur Patel Cisco Systems Category Informational Expires: February 2004 August 2003 Experience with the BGP-4 Protocol Status of this Document This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. The key words "MUST"", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC 2119]. This document is a product of an individual. Comments are solicited and should be addressed to the author(s). Copyright Notice Copyright (C) The Internet Society (2003). All Rights Reserved. McPherson, Patel [Page 1] INTERNET-DRAFT Expires: February 2004 August 2003 Abstract The purpose of this memo is to document how the requirements for advancing a routing protocol from Draft Standard to full Standard have been satisfied by Border Gateway Protocol version 4 (BGP-4). This report satisfies the requirement for "the second report", as described in Section 6.0 of RFC 1264. In order to fulfill the requirement, this report augments RFC 1773 and describes additional knowledge and understanding gained in the time between when the protocol was made a Draft Standard and when it was submitted for Standard. McPherson, Patel [Page 2] INTERNET-DRAFT Expires: February 2004 August 2003 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. BGP-4 Overview . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1. A Border Gateway Protocol . . . . . . . . . . . . . . . . . 4 3. Management Information Base (MIB). . . . . . . . . . . . . . . 5 4. Implementations. . . . . . . . . . . . . . . . . . . . . . . . 5 5. Operational Experience . . . . . . . . . . . . . . . . . . . . 5 6. Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6.1. MULTI_EXIT_DISC (MED) . . . . . . . . . . . . . . . . . . . 7 6.1.1. Sending MEDs to BGP Peers. . . . . . . . . . . . . . . . 7 6.1.2. MED of Zero Versus No MED. . . . . . . . . . . . . . . . 8 6.1.3. MEDs and Temporal Route Selection. . . . . . . . . . . . 8 7. LOCAL_PREF . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8. Internal BGP In Large Autonomous Systems . . . . . . . . . . . 9 9. Internet Dynamics. . . . . . . . . . . . . . . . . . . . . . . 10 10. BGP Routing Information Bases (RIBs). . . . . . . . . . . . . 11 11. Update Packing. . . . . . . . . . . . . . . . . . . . . . . . 11 12. Limit Rate Updates. . . . . . . . . . . . . . . . . . . . . . 12 13. Ordering of Path Attributes . . . . . . . . . . . . . . . . . 12 14. AS_SET Sorting. . . . . . . . . . . . . . . . . . . . . . . . 12 15. Control over Version Negotiation. . . . . . . . . . . . . . . 13 16. Security Considerations . . . . . . . . . . . . . . . . . . . 13 16.1. TCP MD5 Signature Option . . . . . . . . . . . . . . . . . 13 16.2. BGP Over IPSEC . . . . . . . . . . . . . . . . . . . . . . 13 16.3. Miscellaneous. . . . . . . . . . . . . . . . . . . . . . . 14 16.4. PTOMAINE and GROW. . . . . . . . . . . . . . . . . . . . . 14 16.5. Internet Routing Registries (IRRs) . . . . . . . . . . . . 15 16.6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . 15 17. References. . . . . . . . . . . . . . . . . . . . . . . . . . 16 18. Authors' Addresses. . . . . . . . . . . . . . . . . . . . . . 17 19. Full Copyright Statement. . . . . . . . . . . . . . . . . . . 17 McPherson, Patel [Page 3] INTERNET-DRAFT Expires: February 2004 August 2003 1. Introduction The purpose of this memo is to document how the requirements for advancing a routing protocol from Draft Standard to full Standard have been satisfied by Border Gateway Protocol version 4 (BGP-4). This report satisfies the requirement for "the second report", as described in Section 6.0 of RFC 1264. In order to fulfill the requirement, this report augments RFC 1773 and describes additional knowledge and understanding gained in the time between when the protocol was made a Draft Standard and when it was submitted for Standard. 2. BGP-4 Overview BGP is an inter-autonomous system routing protocol designed for TCP/IP internets. The primary function of a BGP speaking system is to exchange network reachability information with other BGP systems. This network reachability information includes information on the list of Autonomous Systems (ASs) that reachability information traverses. This information is sufficient to construct a graph of AS connectivity for this reachability from which routing loops may be pruned and some policy decisions at the AS level may be enforced. The initial version of the BGP protocol was published in RFC 1105. Since then BGP Versions 2, 3, and 4 have been developed and are specified in [RFC 1163], [RFC 1267], and [RFC 1771], respectively. Changes since BGP-4 went to Draft Standard [RFC 1771] are listed in Appendix N of [BGP4]. 2.1. A Border Gateway Protocol The Initial Version of BGP [RFC 1105]. BGP version 2 is defined in [RFC 1163]. BGP version 3 is defined in [RFC 1267]. BGP version 4 is defined in [RFC 1771] and [BGP4]. Appendices A, B, C and D of [BGP4] provide summaries of the changes between each iteriation of the BGP specification. McPherson, Patel Section 2.1. [Page 4] INTERNET-DRAFT Expires: February 2004 August 2003 3. Management Information Base (MIB) The BGP-4 Management Information Base (MIB) has been published [BGP- MIB]. The MIB was updated from previous versions documented in [RFC 1657] and [RFC 1269], respectively. Apart from a few system variables, the BGP MIB is broken into two tables: the BGP Peer Table and the BGP Received Path Attribute Table. The Peer Table reflects information about BGP peer connections, such as their state and current activity. The Received Path Attribute Table contains all attributes received from all peers before local routing policy has been applied. The actual attributes used in determining a route are a subset of the received attribute table. 4. Implementations There are numerous independent interoperable implementations of BGP currently available. Although the previous version of this report provided an overview of the implementations currently used in the operational Internet, at this time it has been suggested that a separate BGP Implementation Report [BGP-IMPL] be generated. It should be noted that implementation experience with Cisco's BGP-4 implementation was documented as part of [RFC 1656]. For all additional implementation information please reference [BGP- IMPL]. 5. Operational Experience This section discusses operational experience with BGP and BGP-4. BGP has been used in the production environment since 1989, BGP-4 since 1993. Production use of BGP includes utilization of all significant features of the protocol. The present production environment, where BGP is used as the inter-autonomous system routing protocol, is highly heterogeneous. In terms of the link bandwidth it varies from 56 Kbps to 10 Gbps. In terms of the actual routers that run BGP it ranges from a relatively slow performance Pentium to a very high performance RISC-based CPUs, and includes both the special McPherson, Patel Section 5. [Page 5] INTERNET-DRAFT Expires: February 2004 August 2003 purpose routers and the general purpose workstations running various UNIX derivatives and other operating systems. In terms of the actual topologies it varies from very sparse to quite dense. The requirement for full-mesh IBGP topologies has been largely remedied by BGP Route Reflection, Autonomous System Confederations for BGP, and perhaps some mix of the two. BGP Route Reflection was initially defined in [RFC 1966] and subsequently updated in [RFC 2796]. Autonomous System Confederations for BGP were initially defined in [RFC 1965] and subsequently updated in [RFC 3065]. At the time of this writing BGP-4 is used as an inter-autonomous system routing protocol between all Internet-attached autonomous systems, with nearly 15k active autonomous systems in the global Internet routing table. BGP is used both for the exchange of routing information between a transit and a stub autonomous system, and for the exchange of routing information between multiple transit autonomous systems. There is no protocol distinction between sites historically considered "backbones" versus "regional" or "edge" networks. The full set of exterior routes that is carried by BGP is well over 120,000 aggregate entries, representing several times that number of connected networks. The number of active paths in some service provider core routers exceeds 2.5 million. Native AS_PATH lengths are as long as 10 for some routes, and "padded" path lengths of 25 or more ASs exist. 6. Metrics This section discusses different metrics used within the BGP protocol. BGP has a seperate metric parameter for IBGP and EBGP. This allows policy based metrics to overwrite the distance based metrics; allowing each autonomous systems to define their independent policies in Intra-AS as well as Inter-AS. BGP Multi Exit Discriminator (MED) is used as a metric by EBGP peers while BGP Local Preference is used by IBGP peers. McPherson, Patel Section 6. [Page 6] INTERNET-DRAFT Expires: February 2004 August 2003 6.1. MULTI_EXIT_DISC (MED) BGP version 4 re-defined the old INTER-AS metric as a MULTI_EXIT_ DISC (MED). This value may be used in the tie-breaking process when selecting a preferred path to a given address space, and provides BGP speakers with the capability to convey to a peer AS the optimal entry point into the local AS. Although the MED was meant to only be used when comparing paths received from different external peers in the same AS, many implementations provide the capability to compare MEDs between different ASs as well. Though this may seem a fine idea for some configurations, care must be taken when comparing MEDs between different autonomous systems. BGP speakers often derive MED values by obtaining the IGP metric associated with reaching a given BGP NEXT_HOP within the local AS. This allows MEDs to reasonably reflect IGP topologies when advertising routes to peers. While this is fine when comparing MEDs between multiple paths learned from a single AS, it can result in potentially bad decisions when comparing MEDs between difference automomous systems. This is most typically the case when the autonomous systems use different mechanisms to derive IGP metrics, BGP MEDs, or perhaps even use different IGP procotols with vastly contrasting metric spaces. Another MED deployment consideration involves the impact of aggregation of BGP routing information on MEDs. Aggregates are often generated from multiple locations in an AS in order to accommodate stability, redundancy and other network design goals. When MEDs are derived from IGP metrics associated with said aggregates the MED value advertised to peers can result in very suboptimal routing. The MED was purposely designed to be a "weak" metric that would only be used late in the best-path decision process. The BGP working group was concerned that any metric specified by a remote operator would only affect routing in a local AS if no other preference was specified. A paramount goal of the design of the MED was to ensure that peers could not "shed" or "absorb" traffic for networks that they advertise. 6.1.1. Sending MEDs to BGP Peers [BGP4] allows MEDs received from any EBGP peers by a BGP speaker to McPherson, Patel Section 6.1.1. [Page 7] INTERNET-DRAFT Expires: February 2004 August 2003 be passed to its IBGP peers. Although advertising MEDs to IBGP peers is not a required behavior, it is a common default. MEDs received from EBGP peers by a BGP speaker MUST NOT be sent to other EBGP peers. Note that many implementations provide a mechanism to derive MED values from IGP metrics in order to allow BGP MED information to reflect the IGP topologies and metrics of the network when propagating information to adjacent autonomous systems. 6.1.2. MED of Zero Versus No MED An implementation MUST provide a mechanism that allows for MED to be removed. Previously, implementations did not consider a missing MED value to be the same as a MED of zero. No MED value should now be equal to a value of zero. Note that many implementations provide an mechanism to explicitly define a missing MED value as "worst" or less preferable than zero or larger values. 6.1.3. MEDs and Temporal Route Selection Some implementations have hooks to apply temporal behavior in MED- based best path selection. That is, all other things being equal up to MED consideration, preference would be applied to the "oldest" path, without preferring the lower MED value. The reasoning for this is that "older" paths are presumably more stable, and thus more preferable. However, temporal behavior in route slection results in non-deterministic behavior, and as such, is often undesirable. 7. LOCAL_PREF The LOCAL_PREF attribute was added so a network operator could easily configure a policy that overrode the standard best path determination mechanism without independently configuring local preference policy on each router. One shortcoming in the BGP-4 specification was a suggestion for a McPherson, Patel Section 7. [Page 8] INTERNET-DRAFT Expires: February 2004 August 2003 default value of LOCAL-PREF to be assumed if none was provided. Defaults of 0 or the maximum value each have range limitations, so a common default would aid in the interoperation of multi-vendor routers in the same AS (since LOCAL_PREF is a local administration knob, there is no interoperability drawback across AS boundaries). The LOCAL_PREF MUST be sent to IBGP Peers. The LOCAL_PREF Attribute MUST NOT be sent to EBGP Peers. Although no default value for LOCAL_PREF is defined, the common default value is 100. Another area where more exploration is required is a method whereby an originating AS may influence the best path selection process. For example, a dual-connected site may select one AS as a primary transit service provider and have one as a backup. /---- transit B ----\ end-customer transit A---- /---- transit C ----\ In a topology where the two transit service providers connect to a third provider, the real decision is performed by the third provider and there is no mechanism for indicating a preference should the third provider wish to respect that preference. A general purpose suggestion that has been brought up is the possibility of carrying an optional vector corresponding to the AS- PATH where each transit AS may indicate a preference value for a given route. Cooperating ASs may then chose traffic based upon comparison of "interesting" portions of this vector according to routing policy. While protecting a given ASs routing policy is of paramount concern, avoiding extensive hand configuration of routing policies needs to be examined more carefully in future BGP-like protocols. 8. Internal BGP In Large Autonomous Systems While not strictly a protocol issue, one other concern has been raised by network operators who need to maintain autonomous systems with a large number of peers. Each speaker peering with an external router is responsible for propagating reachability and path information to all other transit and border routers within that AS. This is typically done by establishing internal BGP connections to McPherson, Patel Section 8. [Page 9] INTERNET-DRAFT Expires: February 2004 August 2003 all transit and border routers in the local AS. In a large AS, this leads to a full mesh of TCP connections (n * (n-1)) and some method of configuring and maintaining those connections. BGP does not specify how this information is to be propagated, so alternatives, such as injecting BGP routing information into the local IGP have been attempted, though it turned out to be a non-practical alternative (to say the least). Several alternatives to a full mesh IBGP have been defined, to include BGP Route Reflection [RFC 2796] and AS Confederations for BGP [RFC 2065], in order to alleviate the the need for "full mesh" IBGP. 9. Internet Dynamics As discussed in [BGP4-ANALYSIS], the driving force in CPU and bandwidth utilization is the dynamic nature of routing in the Internet. As the net has grown, the number of route changes per second has increased. We automatically get some level of damping when more specific NLRI is aggregated into larger blocks, however, this isn't sufficient. In Appendix F of [BGP4] are descriptions of damping techniques that should be applied to advertisements. In future specifications of BGP-like protocols, damping methods should be considered for mandatory inclusion in compliant implementations. BGP Route Flap Damping is defined in [RFC 2439]. BGP Route Flap Damping defines a mechanism to help reduce the amount of routing information passed between BGP peers, and subsequently, the load on these peers, without adversely affecting route convergence time for relatively stable routes. Route changes are announced using BGP UPDATE messages. The greatest overhead in advertising UPDATE messages happens whenever route changes to be announced are inefficiently packed. As previously discussed, announcing routing changes sharing common attributes in a single BGP UPDATE message helps save considerable bandwidth and lower processing overhead. Persistent BGP errors may cause BGP peers to flap persistently if peer dampening is not implemented. This would result in significant CPU utilization. Implementors may find it useful to implement peer dampening to avoid such persistent peer flapping [BGP4]. McPherson, Patel Section 9. [Page 10] INTERNET-DRAFT Expires: February 2004 August 2003 10. BGP Routing Information Bases (RIBs) [BGP4] states "Any local policy which results in routes being added to an Adj-RIB-Out without also being added to the local BGP speaker's forwarding table, is outside the scope of this document". However, several well-known implementations do not confirm that Loc- RIB entries were used to populate the forwarding table before installing them in the Adj-RIB-Out. The most common occurrence of this is when routes for a given prefix are presented by more than one protocol and the preferences for the BGP learned route is lower than that of another protocol. As such, the route learned via the other protocol is used to populate the forwarding table. It may be desirable for an implementation to provide a knob that permits advertisement of "inactive" BGP routes. It may be also desirable for an implementation to provide a knob that allows a BGP speaker to advertise BGP routes that were not selected by descision process. 11. Update Packing Multiple unfeasible routes can be advertised in a single BGP Update message. In addition, one or more feasible routes can be advertised in a single Update message so long as all prefixes share a common attribute set. The BGP4 protocol permits advertisement of multiple prefixes with a common set of path attributes to be advertised in a single update message, this is commonly referred to as "update packing". When possible, update packing is recommended as it provides a mechanism for more efficient behavior in a number of areas, to include: o Reduction in system overhead due to generation or receipt of fewer Update messages. o Reduction in network overhead as a result of less packets and lower bandwidth consumption. o Allows you to process path attributes and look for matching sets in your AS_PATH database (if you have one) less frequently. Consistent ordering of the path attributes allows for ease of matching in the database as you don't have McPherson, Patel Section 11. [Page 11] INTERNET-DRAFT Expires: February 2004 August 2003 different representations of the same data. The BGP protocol suggests that withdrawal information should be packed in the begining of Update message, followed by information about more or less specific reachable routes in a single UPDATE message. This helps alleviate excessive route flapping in BGP. 12. Limit Rate Updates The BGP protocol defines different mechanisms to rate limit the Updates. The BGP protocol defines MinRouteAdvertisementInterval parameter that determines the minimum time that must be elsape between the advertisement of routes to a particular destination from a single BGP speaker. This value is set on a per BGP peer basis. 13. Ordering of Path Attributes The BGP protocol suggests that BGP speakers sending multiple prefixes per an UPDATE message should sort and order path attributes according to Type Codes. This would help their peers to quickly identify sets of attributes from different update messages which are semantically different. Implementers may find it useful to order path attributes according to Type Code so that sets of attributes with identical semantics can be more quickly identified. 14. AS_SET Sorting AS_SETs are commonly used in BGP route aggregation. They reduce the size of AS_PATH information by listing AS numbers only once regardless of any number of times it might appear in process of aggregation. AS_SETs are usually sorted in increasing order to facilitate efficient lookups of AS numbers within them. This optimization is entirely optional. McPherson, Patel Section 14. [Page 12] INTERNET-DRAFT Expires: February 2004 August 2003 15. Control over Version Negotiation Because pre-BGP-4 route aggregation can't be supported by earlier version of BGP, an implementation that supports versions in addition to BGP-4 should provide the version support on a per-peer basis. 16. Security Considerations BGP provides flexible and extendable mechanism for authentication and security. The mechanism allows to support schemes with various degree of complexity. BGP sessions are authenticated based on the IP address of a peer. In addition, all BGP sessions are authenticated based on the autonomous system number advertised by a peer. Since BGP runs over TCP and IP, BGP's authentication scheme may be augmented by any authentication or security mechanism provided by either TCP or IP. 16.1. TCP MD5 Signature Option RFC 2385 defines a way in which the TCP MD5 signature option can be used to valid information transmitted between two peers. This method prevents any third party from injecting information (e.g., a TCP RST) into the datastream, or modifying the routing information carried between two BGP peers. RFC ???? provides suggestions for choosing passwords to be used with MD5. TCP MD5 is not ubiquitously deployed at the moment, especially in inter- domain scenarios, largely because of key distribution issues. Most key distribution mechanisms are considered to be too "heavy" at this point. 16.2. BGP Over IPSEC BGP can run over IPSEC, either in a tunnel, or in transport mode, where the TCP portion of the IP packet is encrypted. This not only McPherson, Patel Section 16.2. [Page 13] INTERNET-DRAFT Expires: February 2004 August 2003 prevents random insertion of information into the data stream between two BGP peers, it also prevents an attacker from learning the data which is being exchanged between the peers. IPSEC does, however, offer several options for exchanging session keys, which may be useful on inter-domain configurations. These options are being explored in many deployments, although no definitive solution has been reach on the issue of key exchange for BGP in IPSEC. It should be noted that since BGP runs over TCP and IP, BGP is vulnerable to the same denial of service or authentication attacks that are present in any other TCP based protocol. 16.3. Miscellaneous Another issue any routing protocol faces is providing evidence of the validity and authority of the routing information carried within the routing system. This is currently the focus of several efforts at the moment, including efforts to define the threats which can be used against this routing information in BGP [draft-murphy, attack tree], and efforts at developing a means to provide validation and authority for routing information carried within BGP [SBGP] [soBGP]. In addition, the Routing Protocol Security Requirements (RPSEC) working group has been chartered within the Routing Area of the IETF in order to discuss and assist in addressing issues surrounding routing protocol security. It is the intent that this work within RPSEC will result in feedback to BGPv4 and future enhancements to the protocol where appropriate. 16.4. PTOMAINE and GROW The Prefix Taxonomy (PTOMAINE) working group, recently replaced by the Global Routing Operations (GROW) working group, is chartered to consider and measure the problem of routing table growth, the effects of the interactions between interior and exterior routing protocols, and the effect of address allocation policies and practices on the global routing system. Finally, where appropriate, GROW will also document the operational aspects of measurement, policy, security and VPN infrastructures. McPherson, Patel Section 16.4. [Page 14] INTERNET-DRAFT Expires: February 2004 August 2003 One such item GROW is currently studying is the effects of route aggregation and the inability to aggregate over multiple provider boundaries due to inadequate provider coordination. It is the intent that this work within GROW will result in feedback to BGPv4 and future enhancements to the protocol as necessary. 16.5. Internet Routing Registries (IRRs) Many organizations register their routing policy and prefix origination in the various distributed databases of the Internet Routing Registry. These databases provide access to the information using the RPSL language as defined in [RFC 2622]. While registered information may be maintained and correct for certain providers, the lack of timely or correct data in the various IRR databases has prevented wide-spread use of this resource. 16.6. Acknowledgements We would like to thank Paul Traina and Yakov Rekhter for authoring previous versions of this document. We would also like to acknowledge Russ White, Jeffrey Haas and Curtis Villamizar for valuable feedback on this document. McPherson, Patel Section 16.6. [Page 15] INTERNET-DRAFT Expires: February 2004 August 2003 17. References [RFC 1105] Lougheed, K., and Rekhter, Y, "Border Gateway Protocol BGP", RFC 1105, June 1989. [RFC 1163] Lougheed, K., and Rekhter, Y, "Border Gateway Protocol BGP", RFC 1105, June 1990. [RFC 1264] Hinden, R., "Internet Routing Protocol Standardization Criteria", RFC 1264, October 1991. [RFC 1267] Lougheed, K., and Rekhter, Y, "Border Gateway Protocol 3 (BGP-3)", RFC 1105, October 1991. [RFC 1519] Fuller, V., Li. T., Yu J., and K. Varadhan, "Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy", RFC 1519, September 1993. [RFC 1656] Traina, P., "BGP-4 Protocol Document Roadmap and Implementation Experience", RFC 1656, July 1994. [RFC 1771] Rekhter, Y., and T. Li, "A Border Gateway Protocol 4 (BGP-4)", RFC 1771, March 1995. [RFC 1772] Rekhter, Y., and P. Gross, Editors, "Application of the Border Gateway Protocol in the Internet", RFC 1772, March 1995. [RFC 1773] Traina, P., "Experience with the BGP-4 protocol", RFC 1773, March 1995. [RFC 2439] Villamizar, C. and Chandra, R., "BGP Route Flap Damping", RFC 2439, November 1998. [RFC 2622] C. Alaettinoglu et al., "Routing Policy Specification Language", RFC 2622, June 1999. [RFC 2796] Bates, T., Chandra, R., and Chen, E, "Route Reflection - An Alternative to Full Mesh IBGP", RFC 2796, April 2000. [RFC 3065] Traina, P., McPherson, D., and Scudder, J, "Autonomous System Confederations for BGP", RFC 3065, Febuary 2001. [RFC 3345] McPherson, D., Gill, V., Walton, D., and Retana, A, "BGP Persistent Route Oscillation Condition", RFC 3345, August 2002. McPherson, Patel Section 17. [Page 16] INTERNET-DRAFT Expires: February 2004 August 2003 [BGP4-ANALYSIS] Work in Progress. [BGP4-IMPL] Work in Progress. [BGP4] Rekhter, Y., T. Li., and Hares. S, Editors, "A Border Gateway Protocol 4 (BGP-4)", BGP Draft, Work in Progress. 18. Authors' Addresses Danny McPherson Arbor Networks Email: danny@arbor.net Keyur Patel Cisco Systems Email: keyupate@cisco.com 19. Full Copyright Statement Copyright (C) The Internet Society (2003). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION McPherson, Patel Section 19. [Page 17] INTERNET-DRAFT Expires: February 2004 August 2003 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McPherson, Patel Section 19. [Page 18]