Passing Errored-Packets to Applications

IETF-57 IAB Plenary

Aaron Falk Allison Mankin

The Problem: Real-time apps are hungry for bits

- Some links have "variable" error rates
 - > E.g., cellular, wireless
- Some applications can tolerate bit errors in data
 - > E.g., voice codecs
- But, transport protocols traditionally checksum the entire packet
 - > Errors anywhere result in packet discard
- So, some folks would like the ability to pass packets with errors to the application

Traditionally, IETF protocols don't pass data with known errors.

Thus, an architectural discussion has ensued...

Can links pass errored-packets?

One view:

Today's link technologies are so good that either all or none of the bits in a packet get through

Another view:

- Some links use FEC that protects packet headers differentially
 - E.g., 3GPP (deployed)

IPv6 interactions

One view:

➤ IPv6's lack of checksum should make the use of a transport checksum mandatory

Another view:

Transport protocols may be crafted to provide partial/modular checksum coverage

Encryption & authentication fail

One view:

One man's errored-packet is another man's spoofed data; errored-packets will fail authentication & decryption

Another view:

Some use cases don't require security; there are encryption schemes which are bit-error tolerant

Congestion vs. Corruption

One view:

CC algorithms will be able to better distinguish between congestion and corruption.

Another view:

➤ We don't have a clue on how to respond to corruption. In particular, we don't know when corruption is, in fact, an indication of congestion.

Differential protection of headers has some challenges...

- IP options, encapsulated headers result in protection of variable regions
 - Links would need to become "transport-aware"
- Therefore, all IP packets are not treated equally
 - Process cycles at link interface may be prohibitive

However, lacking a solution...

Today, some users are running UDP with checksum disabled

- Port #, header info may be corrupted
- > Receiver doesn't need to agree for this to happen
- ▶ Potential BIG problems with IPv6 no IP checksum
- VoIP packets of this nature have been observed in the wild

So, is this a good idea?

Discussion is happening in the Transport Area

Two proposals:

- draft-ietf-tsvwg-udp-lite-01.txt
 - > In IESG review
- draft-ietf-dccp-spec-01.txt
 - Near WG last call

Opportunity for discussion tonight...

Thank you.