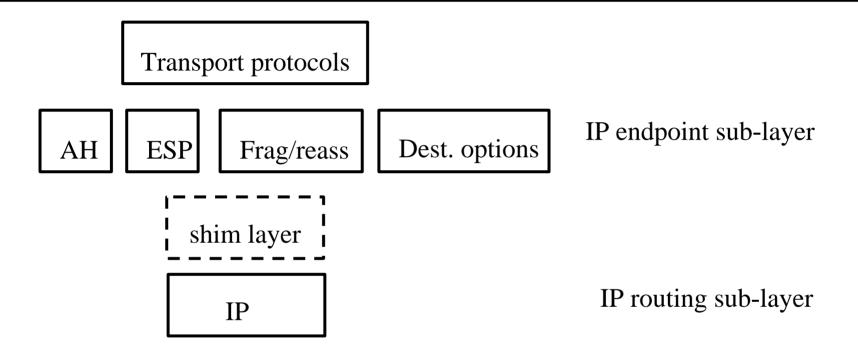
HIP-WG meeting, IETF62

Generalizing the HIP base protocol (draft-henderson-hip-generalize-00.txt)

March 9, 2005

Tom Henderson

Executive summary


- A few small changes to the base protocol now may give us more room to experiment in the future
- Generalize HIT fields to "upper layer identifier (ULID)"
- 2. Allow multiple usage profiles for HIP handshake
- 3. Do not mandate that specific HIP messages carry specific parameters

Motivation

- Should we be allowing for more experimentation in the use of HIP protocols?
 - HIP protocols perceived to be too inflexible by some
 - Find the common ground between a number of similar proposals, and see how HIP fits

HIP	mobile II	sh:	im6	i3	NIMROD
IPNL	Datal	Router	TRIAL)	FARA
Network	Pointers	DOA	SIM		MAST/CELP
SCTP	WIMP	1010	OBIKE orking group	_	Hi3

Generalized architecture

Figure adapted from:

E. Nordmark and M. Bagnulo, "Multihoming L3 Shim Approach," draft-ietf-multi6-13shim-00, January 2005

Decomposition

- 1. <u>Upper-layer identifier:</u> HIT, but also mobile IP home address, unique-local address, identifier-address, and other identifiers at other layers (e.g., session)
- 2. <u>Address resolution:</u> "Early binding" (HIP) or "late binding" (e.g., i3, mobile IP through home agent)
- 3. <u>Context establishment:</u> HIP handshake, but also IKE/MOBIKE and shim6
- 4. <u>Per-packet context:</u> SPI, but also Routing Headers/Destination Options, or explicit shim headers
- 5. <u>Locator management:</u> HIP mobility/multihoming, but also MAST, CELP, multi6 locator selection, hash-based addresses

Combinations

- HIP/i3 (Hi3)
- HIP/IKE (or MOBIKE)
- HIP/mobile IP
- HIP/multi6
- HIP rendezvous server and STUN

Would a generalized protocol make these combinations easier?

Proposal 1. Identifiers

- Allow use of non-HIT identifiers (or non-128 bit identifiers)
 - Used as ULIDs in transport protocol
 - Pekka has suggested a few standard sizes rather than TLV format (e.g. 32, 64, 128, 256, 512)
- Benefits:
 - Future evolutions in HITs (e.g., current SHA-1 concerns)
 - More flexibility in invoking HIP handshake
 - What if context establishment is deferred, and IP addresses used in transport sockets?

Proposal 2. Handshake types

- Allow use of handshake variants
 - Existing handshake would be one usage profile
 - SIGMA-compliant DH key exchange
 - Perhaps indicated as different flavors of I1, or a type parameter
- Benefits
 - Allowing lighter-weight handshakes such as WIMP (based on hash chains)

Proposal 3. Mandatory parameters

- Do not mandate that packet types carry mandatory parameters
 - Only mandatory parameters are the identifiers (was the HITs)
 - Handshake type defines the usage profile (requirements) on later messages
 - e.g. if I1 indicates current HIP usage profile, then R1 MUST include PUZZLE
- Corollary: avoid making statements such as ESP is a "MUST" implement
- This mainly affects how draft is organized and written

Security considerations

- Mixing and matching of protocol elements obviously changes the security properties
 - Leave this for other drafts
- May offer a more gradual path forward to a HIP-enabled world (with better security)

Summary

- Current HIP could be defined as a "usage profile" of a slightly more generalized protocol
- Possible benefits:
 - HIP elements could be considered for the shim6 protocol
 - HIP messaging may be able to secure mobile IPv6
 Binding Update
 - Might allow other identifier types while still enabling the ID/locator separation