
ICE

Jonathan Rosenberg

Cisco Systems

Draft Status

• Unfortunately, draft update contained no
changes, just a version number roll

• Several issues identified right after last
meeting, raised a concern that things
weren’t quite right yet

• Additional issues were raised from folks
using the protocols about operational
concerns

Changes to be made

• Clarify re-INVITE behaviors
– If you remove current high priority candidate,

need to change username/pass on lower
priority ones to force retry

• TURN back to informative
• RTCP bandwidth parameter to 00 if you

are not using RTCP
• Discussion on issues of lots of STUN

startup packets and impacts on
congestion

List Issue #1: Obfuscating ICE
address

• Concerns about NATs that try to “help” by
rewriting instances of private addresses in
packets from inside to outside

• RFC3489bis deals with this by xor’ing IP
address with transaction ID. Do we need
something similar?

• Rough consensus was no

List Issue #2: RTP Specificity

• Problem
– Candidate attribute is RTP specific, and

provides an alternative for a single IP/port for
RTP and RTCP

– Several cases where other addresses need
candidates

• Non-RTP transports

• RFC 2733, where IP is transported in a=fmtp

• Propose generic candidate attribute

Grammar
 candidate-attribute = "candidate" ":" id SP qvalue SP
 user-frag SP password SP
 unicast-address SP port
 candidate-addr SP candidate-port

 v=0
 o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5
 s=SDP Seminar
 c=IN IP4 1.2.3.4
 a=recvonly
 m=audio 49170 RTP/AVP 0
 a=candidate 1 0.4 adsasda 9as8dasd 1.2.3.4 49170 10.0.1.1 8700
 a=candidate 2 0.4 asf9fdf8 00d-ffas 1.2.3.4 49171 10.0.1.1 8765

Issue #2 continued

• May desire certain addresses to use the
same group of candidates
– i.e., RTP and RTCP should both go along

same path

• This is accomplished by setting the
priority identically

• Appeared to be consensus on these
points. OK?

Issue #3: TCP alternates for UDP

• Problem statement
– For an UDP RTP stream, the only alternates you can

choose are UDP
– In the worst of environments, only outbound TCP to a

server will work
– We have defined RTCP over TCP, and TURN allows

you to obtain a TCP address/port
– We have no way to decide whether to use this worst-

case option
– We want ICE to be able to make VOIP “just work” in

today’s common cases
• And it won’t in all cases
• Users and enterprises won’t understand why not

Call Flow
 Caller TURN Callee
 |(1) TCP SYN | |
 |----------------------->| |
 |(2) SYN-ACK | |
 |<-----------------------| |
 |(3) Allocate | |
 |----------------------->| |
 |(4) IP+port X:Y | |
 |<-----------------------| |
 |(5) INVITE | |
 |m=A:B | |
 |cand=TCP,X:Y | |
 |passive | |
 |-->|
 |(6) 200 OK | |
 |<--|
 |(7) ACK | |
 |-->|
 | |(8) TCP SYN X:Y |
 | |<-----------------------|
 | |(9) SYN-ACK |
 | |----------------------->|
 | |(10) STUN |
 | |<-----------------------|
 |(11) STUN | |
 |<-----------------------| |
 |(12) STUN resp | |
 |----------------------->| |
 | |(13) STUN resp |
 | |----------------------->|

Questions and Issues

• Does this represent a technique for
circumventing the firewall policy?
– Does blocking outbound UDP imply that VoIP service

is being blocked?
• No

– Would there be a way to block just this?
• Yes – block TURN ports

• Would this be required?
– SHOULD implement, with reasons why, just like

TURN
– Policy could turn it off in an endpoint, like any other

candidate technology

Questions and Issues

• The big grouping problem
– Concern that we may need to convey parameters for

a candidate that are different from the m/c line values
for the default

• Problem for just regular candidates?

– Concern that you can’t use the defaults by just
replacing “RTP” with “TCP/RTP” to identify the profile
for TCP

• RTP/AVPF exists, but not TCP/RTP/AVPF, and it might not
need to

• And then it dawned on me – a solution that
solves this and the other issues

Issue #4: Figuring out what
happened

• Concerns have been raised that ICE is hard to
diagnose
– Final IP/port that is used is never signaled

– Final IP/port that is used may never have even
appeared in an SDP

• Learned through p2p STUN – used to be signaled

• Presumption is that SIP signaling is logged and
that provides data for diagnosis

• Proposal made on sipping to send a re-INVITE
after all done with the final choice

Issue #5: Precondition Interactions

• If ICE is in use, when are preconditions
considered met?
– Is it assured for all candidates?

– Is it assured for just the successful ones?

– Is the solution specific to the precondition?

Issue #6: Middlebox Interactions

• There are lots of things in the network that look
at the SDP and open firewalls, establish QoS
and do other things
– Midcom, 3gpp PCSCF, Cablelabs PCMM
– SBCs that modify the SDP are different (though also

a concern)

• These things look at the m-line/c-line for the
IP/port
– This IP/port will be wrong

• Result: things stop working with ICE when they
used to work

Issue #7: Dynamic RTP Changes

• With ICE, the place to which RTP is sent
will change dynamically as connectivity
checks succeed
– Will interact with jitter buffers

– May make audio quality worse during the
check periods

Issue #8: Ugliness in STUN/RTP
Demux

• Mechanism requires STUN/RTP demux
without a clear synchronization point at
which you go from one to the other
– Has raised implementation issues

– To avoid it, current version requires a
separate local transport address for each
derived one

• However, this still problematic with forking

Issue #9: SRTP Interaction

• Simply unclear what the current
interaction is

One Solution

• Root cause of all of these problems is a single
fact
– The peer in the dialog starts sending media to the

new address once the connectivity check succeeds
• Proposal: separate these

– Always send media to the IP/port in the m/c lines
– Only send connectivity checks to the IP/ports in the

candidate attributes
– When connectivity checks succeed, and it is

determined that there is a desire to change where
media is received, do a re-INVITE or UPDATE that
“promotes” the IP/port from a candidate to the m/c line

– Note: this does not increase call setup time or PDD!

Caller Callee

NAT NAT

TURN/
STUN

TURN/
STUN

Proxy Proxy

X:Y

Caller Callee

NAT NAT

TURN/
STUN

TURN/
STUN

Proxy Proxy

Caller gets STUN
And TURN addresses
From server
STUN: A:B
TURN: C:D

X:Y

Caller Callee

NAT NAT

TURN/
STUN

TURN/
STUN

Proxy Proxy

INVITE

O=IN IP4 C
M=audio D RTP/AVP 0
A=candidate: UDP A:B
A=candidate: UDP C:D
A=candidate: UDP X:Y

STUN: A:B
TURN: C:D
Local: X:Y

Caller Callee

NAT NAT

TURN/
STUN

TURN/
STUN

Proxy Proxy

Callee gets STUN
And TURN addresses
From server
STUN: E:F
TURN: G:H

U:V

STUN: A:B
TURN: C:D
Local: X:Y

Caller Callee

NAT NAT

TURN/
STUN

TURN/
STUN

Proxy Proxy

200 OK

O=IN IP4 G
M=audio H RTP/AVP 0
A=candidate: UDP E:F
A=candidate: UDP G:H
A=candidate: UDP U:V

STUN: E:F
TURN: G:H
Local: U:V

STUN: A:B
TURN: C:D
Local: X:Y

Caller Callee

NAT NAT

TURN/
STUN

TURN/
STUN

Proxy Proxy

STUN: E:F
TURN: G:H
Local: U:V

STUN: A:B
TURN: C:D
Local: X:Y

Media starts flowing
immediately to the c/m
value of the peer

U:V

C:D

X:Y

G:H

Caller Callee

NAT NAT

TURN/
STUN

TURN/
STUN

Proxy Proxy

STUN: E:F
TURN: G:H
Local: U:V

STUN: A:B
TURN: C:D
Local: X:Y Connectivity checks

Ensue from callee to caller
STUN and TURN ones work
Same in reverse (not shown)

U:V

C:D

X:Y

A:B

X:Y

Caller Callee

NAT NAT

TURN/
STUN

TURN/
STUN

Proxy Proxy

INVITE

O=IN IP4 A
M=audio B RTP/AVP 0
A=candidate: UDP A:B
A=candidate: UDP C:D
A=candidate: UDP X:Y

STUN: A:B
TURN: C:D
Local: X:Y

Caller Callee

NAT NAT

TURN/
STUN

TURN/
STUN

Proxy Proxy

200 OK

O=IN IP4 E
M=audio F RTP/AVP 0
A=candidate: UDP E:F
A=candidate: UDP G:H
A=candidate: UDP U:V

STUN: E:F
TURN: G:H
Local: U:V

STUN: A:B
TURN: C:D
Local: X:Y

Caller Callee

NAT NAT

TURN/
STUN

TURN/
STUN

Proxy Proxy

STUN: E:F
TURN: G:H
Local: U:V

STUN: A:B
TURN: C:D
Local: X:Y

Media starts flowing
 to the c/m
value of the peer

U:VX:Y

A:B E:F

How does this address each of the
open issues?

• Issue #3: TCP
– Candidate doesn’t need RTP

information since RTP never
sent there!

– When a TCP IP/port is listed
as a candidate, you try to
connect and check if it works

– When it works, its “promoted”
into the c/m lines and then
you provide the SDP info as
needed – just as if I did a re-
invite updating a UDP to a
TCP session w/o ICE

• Issue #4: what happened
– What happened is always

signaled in the m/c lines

• Issue #5: preconditions
– No interactions anymore,

since its normal precondition
interactions with re-INVITEs

• Issue #6: middleboxes
– Depends on what they do –

QoS ones will work perfectly
– Midcomish things still need to

know candidates, or
connectivity checks won’t
work, but call using default
m/c will work

Addressing the Issues

• Issue #7: dynamic RTP
changes
– Doesn’t happen anymore

unless signaled

• Issue #8: RTP demux
– An implementation can

avoid any demux by using
separate value for c/m
than candidates

– Barrier sync through
connectivity checks (later)
so you never get STUN
when you re-INVITE and
move address into c/m

– Drawback – no media
while checks are running

• Issue #9: SRTP
interaction
– No longer an interaction –

RTP never sent to
candidates

– Looks like a re-INVITE as
far as SRTP is concerned

FAQ

• Does this increase call setup delay?
– No – INVITE/200/ACK as fast as previous versions

• Does this increase PDD?
– No – media starts flowing to the c/m line as soon as

INVITE is received (assuming it works)
• If it doesn’t work, PDD is suffered until a better candidate is

found, followed by a re-invite to use it
• This adds an RTT above existing mechanism for this case

(corner case though)

• Does the re-INVITE always get sent?
– No – only if the result of the checks produces a

different address that you prefer

Main technical question

• This approach depends
on the caller figuring out
when the callee’s checks
have succeeded
– This requires a three-way

handshake for the
connectivity check

• Previously, RTP packet
was used as the third leg
of the check
– And this introduced many

of the problems

• Need a different
approach
– (1) Extend STUN with an

ACK transaction of some
sort (rfc3489bis)

– (2) Use a second
BindingRequest as the
ACK

– (3) Define a totally new
protocol

Question

• Does this seem like a reasonable change
to pursue?
– If so, will produce an update with the details

