SHA-1 Hash Function Replacement

Uri Blumenthal

CTech Lab
Intel Corporation

Charanjit Jutla

Watson Research Center IBM Corporation

November 10, 2005

What is the problem?

- All crypto hashes deployed today broken
 - To variable extent, but still...
- Strongest hash <u>currently</u> deployed SHA-1
 - Design based on intuition, not science
 - Practical attacks are expected within one year
 - Either attack complexity will improve to 2⁵⁰ (predicted lower bound)
 - Or distributed (and/or supercomputer) search will succeed at 2⁶³ attack
 - Or both?

Why not SHA256?

- Ultimately SHA256 planned as solution but
 - Again intuition-based design that failed twice (SHA0 & SHA1), no known lower bounds
 - Requires radically new implementation
 - Different parameter size, etc.
 - Deployment expected by <u>2010</u> not soon enough!
 - Performance sucks (and will for a few years)
 - Shares design weakness with SHA-1, plus
 - Non-linear code security by confusion, not science
 - Non-linearity without analysis can lead to disastrous attacks
 - If truncated to 160 bits problems compound

Replace SHA-1 with what?

- Leading attack against SHA-1 differential
 - Offers practical method of finding collisions
 - All other practical attacks rely on this one
- Math shows why differential attack possible
 - Weak key schedule (message expansion)
 - Low minimum Hamming distance
- Math also shows how to foil this attack
 - And therefore invalidate other attacks as well
- SHA1-IME is implementation of this defense

Structure of SHA1-IME

- Same as SHA-1 in FIPS 180-1 and FIPS 180-2
- Minor change to message expansion
 - Old code (part of message expansion):

```
1. for(t = 16; t < 80; t++)
```

- 2. $W[t] = ROL1(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);$
- New code:

```
1. for(t = 16; t < 36; t++)
```

- $W[t] = (W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]) ^$
- 3. ROL13 (W[t-1] ^ W[t-2] ^ W[t-15]);
- 4. for(t = 36; t < 80; t++)
- 5. $W[t] = (W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]) ^$
- 6. ROL13, (W[t-1] ^ W[t-2] ^ W[t-15] ^ W[t-20]);
- Provably secure against differential attacks

Deploy SHA1-IME because

- SHA1-IME leaves API and PKCS unchanged (same input and output size)
- Performance hit minor about 5% in software (possibly 10% in hardware)
- SHA1-IME is <u>provably</u> secure proven lower bound on collision probability
 - Differential attack estimated 2¹⁵⁰ probability
- SHA1-IME easiest to get FIPS certification if you already certified SHA1
 - As it is a small change to already-certified FIPS 180-1, process much faster
- Code change miniscule easier to do
 - Both software and firmware (ASIC may be in trouble ©)

NO PATENTS!

References

- Uri Blumenthal <u>uri.blumenthal@intel.com</u>
- Charanjit Jutla csjutla@watson.ibm.com
 - Please direct math questions to Charanjit ©
- Anindya Patthak patthak@gmail.com
- Specification in draft-irtf-cfrg-sha1-ime-00.txt
 - URL to follow, also being submitted to CFRG

THANK YOU!