

Pretty Secure BGP (psBGP)

Tao Wan Nortel Networks P.C. van Oorschot, Evangelos Kranakis Carleton University

November 10, 2005

Outline

- Goals for BGP Security
- Pretty Secure BGP (psBGP)
- Comparison of S-BGP, soBGP, psBGP
- Concluding Remarks

"Common" BGP Security Goals

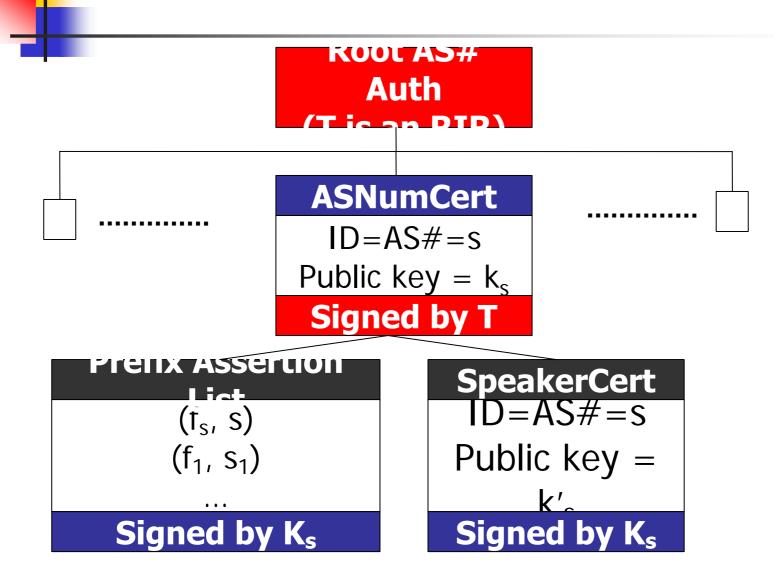
> Data Origin Authentication

- BGP Speaker Authentication
- AS Number (AS#) Authentication
- > Data Integrity (of control messages)
- ≻Message "Truthfulness"
 - Prefix Origin Verification
 - AS-PATH Verification

Sample of Related Work

- Perlman 1988 (Ph.D thesis)
- ➢ Bellovin 1989 (ACM CCR), 2004 (ACSAC)
- ➤ Kumar 1993 (ACM SIGSAC Review)
- Murphy 2001 (*IETF draft*)
- ➢ Kent et al. 2000 (NDSS) − S-BGP
- ➢ White et al. 2003 (IPJ) soBGP
- ➢ Goodell et al. 2003 (NDSS) − IRV
- ➢ Aiello et al. 2003 (CCS) − OA
- ➢ Hu et al. 2004 (SIGCOMM) SPV

Pretty Secure BGP (psBGP)


A Centralized Trust Model for AS# Authentication

A Decentralized Trust Model for Prefix Origin Verification (by corroboration)

Comparison of S-BGP, soBGP and psBGP

	AS# Authentication	Prefix Origin Verification	AS_PATH Verification
S-BGP	Centralized (multiple levels)	Centralized (multiple levels)	Full integrity
soBGP	Decentralized (with trust transitivity)	Centralized (multiple levels)	Plausibility
psBGP	Centralized (depth=1)	Decentralized (no trust transitivity)	Stepwise integrity

psBGP Certificate Structure

psBGP AS# Authentication (*analysis*)

Reduced trust issue – RIRs are trusted authorities for AS numbers

Simplified naming issue – subject IDs are AS#

Manageable # of certificates – 17,884 ASes as of August 1, 2004 with a growth rate on average of 190 per month

psBGP A Rating Mechanism (1)

- Each AS s_i rates every other AS s_j with a value r_i(s_j) in [0,1], indicating s_i's belief in s_j
 Ratings are static and preconfigured
- ► Belief comb rule ($a_{[1..n]}$: an assertion by $s_1,..,s_n$)

MADA

2

R

IS

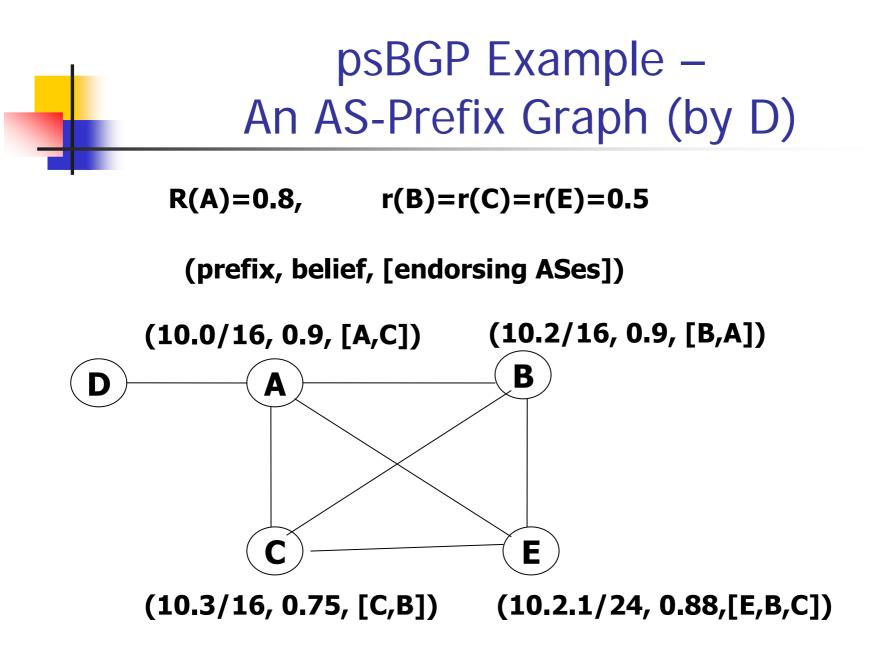
A

psBGP A Rating Mechanism (2)

 $\succ r_i(s_1) = 0.5, r_i(s_2) = 0.6 \Rightarrow b_i(a_{[1,2]}) = 0.8$

$\succ r_i(s_3) = 0.4 \Rightarrow b_i(a_{[1,2,3]}) = 0.88$

- Evidence from a fully distrusted AS (rated by 0) does not increase belief
- Evidence from a fully trusted AS (rated by 1) increase belief to maximum, i.e., 1
- Combination rule is commutative and associative

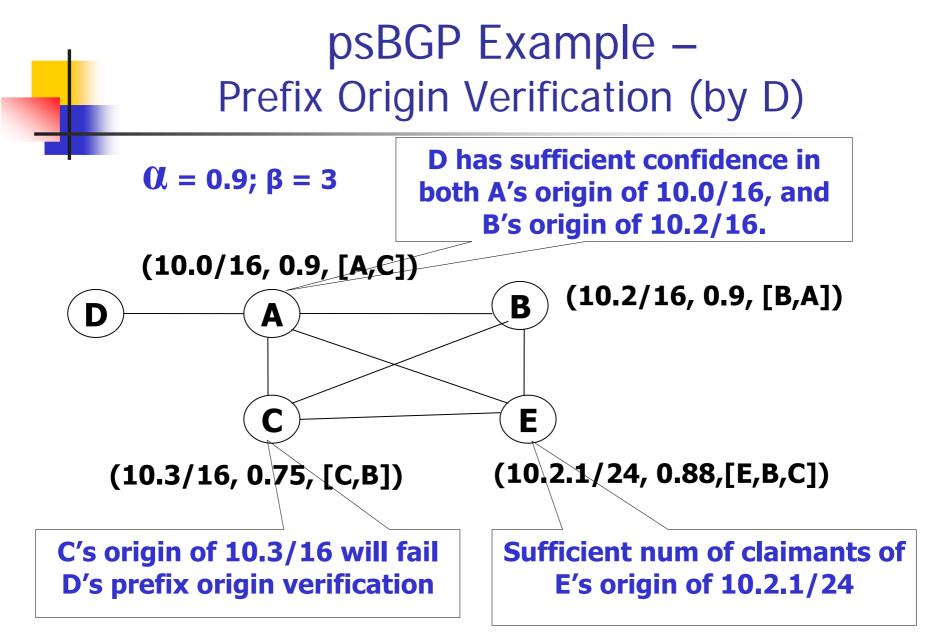

psBGP Prefix Origin Verification (1)

- Each AS issues a prefix assertion list (PAL), listing AS#-prefix bindings for itself + selected neighbors (e.g., customers)
- *PALs* distributed with BGP UPDATE messages
- Each AS builds an AS-prefix graph based on its own PAL and those received from others
- An AS-prefix graph is used for verifying prefix "ownership"

psBGP Example – Prefix Assertion Lists

 $10.1/16 \quad 10.2/16$ (D - A - B) $192.3/16 \quad (C - E)$ $10.3/16 \quad 10.2.1/24$

 $\{ (10.1/16, A), (10.2/16, B), (0, C), (192.3/16, D) \}_{A} \\ \{ (10.2/16, B), (0, A), (10.3/16, C), (10.2.1/246, E) \}_{B} \\ \{ (10.3/16, C), (10.1/16, A), (0, B), (10.2.1/24, E) \}_{C} \\ \{ (192.3/16, D), (0, A) \}_{D} \\ \{ (10.2.1/24, E), (0, B), (0, C) \}_{E}$



psBGP Prefix Origin Verification (2)

Two thresholds used for prefix origin verification
 α: Sufficient confidence
 β: Sufficient claimants

A route (f, [s]) verifies properly by D if

- D's belief in (f,s) binding $\geq \alpha$; or
- # of ASes asserting (f,s) >= β

Concluding Remarks

- Resilient to uncoordinated false prefix origin (e.g., attacks or misconfigurations)
- Reasonable deployment effort (e.g., PKI is simple and of manageable size)
- > Deployment independent of each other
- ➢ Certain incremental benefit

For more information

http://www.scs.carleton.ca/research/tech_reports /2005/download/TR-05-08.pdf