
Diameter AAA API

IETF 65
David Frascone <dave@frascone.com>

Purpose

• Why was the API Created?
• Implementation independence

– API is callback based. (Applications register
to receive messages)

– Generic API for initialization, sending
messages, etc.

History

• Original version had Java / C++ support.
• 00 -> 01

– Java support removed.

• 01 -> 04
– No real changes, no comments from aaa list.

• 04 -> 05
– Editorial fixes from comments on the list

• 05 -> dime 00
– More editorial changes from author(s).

Design

• Callback based
– Application registers to receive messages via

callback function.
– Other functions (building messages, sending

messages) are direct calls (not callbacks).
– Structures are allocated by diameter server.

Application uses references.

Design

• Information Hiding
– Two structures are used to hold AVPs, one

made public to the application, one internally
used in the diameter server.

– This is so applications do not need to know
how AVPs are represented internally.

Information Hiding (eye test)

Public AVP Structure

 typedef struct avp {
 enum {
 AAA_RADIUS,
 AAA_DIAMETER
 } packetType;
 AAA_AVPCode code;
 uint16_t length;
 AAA_AVPFlag flags;
 AAA_AVPDataType type;
 AAAVendorId vendorId;
 void* data;
 } AAA_AVP;

Private AVP Structure

 typedef struct xavp {
 AAA_AVP avp;
 struct xavp *next;
 struct xavp *prev;
 int privateFlags;
 } Extended_AAA_Avp;

What next?

• Where do we go from here?
– WG Item?
– Assign Editors?

• Comments / Flames / Toss spoiled
vegetables?

