A Brief Jitter Metrics Comparison, and not the last word, by any means...

March 21, 2006 Al Morton

(Remember, both metrics described here are RFC 3393-compliant.)

Inter-Packet Delay Variation

IPDV(2) = (R2-R1) - (T2-T1)

IPDV(4) = (R4-R3) - (T4-T3)

Packet Delay Distribution

IPDV (*selection f = previous packet*)

- Dynamic Reference for assessing variation
- Possible to relate to RFC 3550 Jitter (smoothed est.)
- Minimal Dst Clock stability required
- Path Change WITH Loss is effectively IGNORED
- Path Change WITHOUT Loss affects 2 IPDV readings

PDV (selection f = minimum delay pkt in stream)

- Single, Fixed Reference, normalizes delay distrib.
- No clear relationship to RFC 3550 Jitter
- Dst Clock for 1-way delay, but in practice only stability matters over a longer evaluation interval
- Path Change WITH Loss causes Bi-Modal Distrib.
 - Practical fix: Could terminate a sub-interval after loss of x packets
- Path Change WITHOUT Loss -> Bi-Modal Distrib.
 - But that's what a de-jitter buffer would experience, too...

HOW do YOU want to use the DV results?

- **1.** Compare with Requirements/SLA/Maint. Threshold?
 - -- but how are <u>your customers</u> using the Req/SLA/MainThresh?
- 2. Real-Time Application Planning: How big should my De-jitter buffer be?
 - -- Note that even Adaptive DJB use a fixed reference between adjustments.
- 3. <insert your answer here>
- 4. ACM 's answer:

Doing (1.), to support (2.), with Composed Metrics (earlier talk), in a multi-operator environment

Comparison of Jitter Concatenation Methods using Segmented Jitter Measurements

(Short summary of results)

Len Ciavattone, Al Morton, and Gomathi Ramachandran (with contributions from Dave Hoeflin)

Measurement Summary

- Simultaneously measured jitter across two independently congested CE/PE T1 interfaces as well as end-to-end from CE to CE
- Generated all three sets of measurement probes from a single server (with multiple interfaces) to a second server acting as a responder (also with multiple interfaces)
- Generated unidirectional TCP background traffic from CE1 to PE1 and from PE2 to CE2 (no background traffic was sent between PEs)
- Probes were 60 byte (UDP) packets with 20 ms spacing
- All servers were running RedHat Linux 9.0
- All T1 queuing was configured as FIFO

Lab Measurement Set-up

Page 10

Medium Load: Comparison of Estimation Methods

	CE-CE Meas.	Est. from mean, variance and segment %-iles	Collect/ Convolve 1 ms bin histogram (D.Hoeflin)	RMS Addition (an old approx)	Heuristic Addition of %-iles
99.9%-ile, ms	107	103.5	109	79.2	110 (95+95+ 99.9)
Error to Meas.		3.5 ms -3.3%	2 ms 1.9%	-27.8 ms -26.0%	3 ms 2.8%

Single repeating 10,000 byte TCP transfer (new connection setup for each) Load Server Start Times: Simultaneous