

Evaluating the Use of SIP for Streaming Media Applications

draft-whitehead-mmusic-SIP-for-streaming-media

Marie-José Montpetit - presenter Xavier Marjou Steven Whitehead

Rationale for Exploring the Use of SIP

- Create value-added 'blended' services based on the use of a common signaling platform.
- Build on SIP instead of duplicating its capabilities in other protocols when SIP capabilities are needed.
- Unify and re-use common service architectures.
- Use SIP Rendezvous mechanism to access NATed resources.
- Use SIP extensions for conveying charging/settlement information.
- Use SIP extensions for pre-conditions and for signaling QOS transport.
- Other?

Service Convergence

- Scenario: "Streaming Media and More":
 - Sarah receives her communications and entertainment services from a single service provider.
 - Services include: multi-media communications & messaging (text, voice, video); broadcast and on-demand streaming media (music and video).
 - Services are delivered to a wide variety of end-user devices (fixed & mobile).
- Common service elements are used to implement common functions for multiple services:
 - Service signaling, subscriber management, AAA & billing, service-based QOS
 - Use of common (SIP-based) features facilitates:
 - Development of 'blended services' by coordinating service interactions.
 - Avoiding duplicated functions.
 - New service deployment by building on existing mechanisms.

Access to Content on Private Networks

Scenario 1: Remote Monitoring:

- Susan has contracted with a video surveillance company to watch her house while she's away on vacation.
- Using a SIP-based streaming media applications, employees at Acme Security can remotely control and view content from video cameras strategically located around Susan's home.

Scenario 2: Sharing Personal Videos:

- Bob has just uploaded the latest video of his newborn daughter Jessica on the family's personal media server. He sends an email to his parents that contains a URL to the movie. The grandparents click on the link, which initiates a SIPbased 'click-to-view' session with Bob's personal media server.
- Use SIP rendezvous to locate and initiate a session with a server located behind a NAT/FW on private IP-network.

Multi-provider Service Delivery

- Scenario: Multiple Affiliated Content Providers:
 - As part of Jane's IPTV service, her VOD entertainment package provides her with access to thousands of titles offered by dozens of content providers.
 - When she selects title to view, her service provider transparently coordinates subscriber identification, authorization, accounting, signaling and settlements with the affiliated content provider.
 - Moreover, QOS-enabled delivery of the video stream may require coordination across multiple transport providers, this too is transparently managed by Jane's service provider via a SIP-based signaling network.
- Use SIP-based mechanisms to coordinate service delivery amongst multiple providers:
 - Use a single-sign on mechanism to support multiple services offered by multiple providers.
 - Establish trusted signaling channels between providers.
 - Exchange transaction identifiers to facilitate charging and settlements between providers.

Local QoS Settings

- Scenario: wireless customer watching a streaming video:
 - When the server is not located in the same area as the client it prevents the VOD server from realistically acting as the Application Function (AF) to the regional/local Resource and Admission Control Function (RACF).
 - In the case of wireless video this is a realistic scenario since the it might be reasonable to deliver a "wireless" video stream long-distance across the Internet.
- Use SIP-preconditions to establish local QOS.

Solution Space

SIP-only solutions:

- Use SIP to signal streaming media application sessions.
- Use SIP-based extensions to support application control signaling.
 - Application control signaling: 'trick-plays', 'camera controls', 'game-controls'.
 - Extension Techniques: (supported/signaled via 'required/option headers):
 - New SIP headers (e.g., SIP-MEX proposed extensions to Invite/Update).
 - New SIP bodies (e.g., control messages carried in INFO messages).
 - New SIP methods (e.g., new SIP methods for 'trick-plays').

Dual-protocol solutions:

- Use SIP to signal sessions for both media AND control flows.
- Use a second protocol for application control signaling (e.g., RTSP or other).
- Options:
 - SIP & RTSP2 Interworking (via synchronization extensions)
 - SIP & RTSP-lite
 - SIP & MRCP2
 - SIP & 'Boulton application control framework'
- All RTSP

Draft Status

- V0: Individual contribution.
- Informational.
- Collects inputs from authors and contributions from the mailing list.
- Provides use cases, defines requirements and refines the solution space.

Next Steps

- Evaluate WG interest in this topic:
 - Are more people interested in developing this topic?
 - Under which working group Charter if any?
 - MMUSIC, SIP, SIPPING, Other, None?
 - Current I-D: Use Cases & Requirements:
 - New version after meeting based on comments?
- Prototypes and working implementations:
 - Work in progress on implementations POC.

Contacts

Marie-José Montpetit Motorola mmontpetit@motorola.com

Xavier Marjou France Telecom xavier.marjou@francetelecom.com

Steven Whitehead Verizon steven.d.whitehead@verizon.com

Mailing List: sip-rtsp@external.cisco.com

Send email to authors to be added (no external procedure as of yet)

