
draft-weis-tcp-auth-auto-ks-00

Brian Weis
Chandra Appanna

David McGrew
Anantha Ramaiah

2

Overview
• The TCP Extended Authentication (TCP-EA)

Option (draft-bonica-tcp-auth-04) specifies
how to manipulate a set of MAC session
keys.
– The MAC keys are entered into the router

configuration manually, and stored in a key chain
• Manual keys are non-optimal with respect to

security and operations.
• This draft proposes an optional automated

key selection mechanism for the TCP-EA
Option that improves both security and
operational complexity.

3

History

• This work was first published in
draft-weis-tcp-mac-option-00

• We subsequently agreed to make it an
extension of draft-bonica-tcp-auth-04

4

Goals
• Improve the operational characteristics of MAC

session keys.
– Human generated keys (especially those based on

passwords) are never as good as randomly generated keys.
– Requiring an operational staff to continually add new keys is

both an operational problem and a security risk.
• Do this without introducing a heavy-weight out-of-

band negotiation protocol.
– Automatic Key Selection must be light-weight, in terms of

complexity.
• Enable use of better performing MAC algorithms not

suitable for use with manual keying.

5

Our Proposal
• A light weight mechanism whereby one TCP

endpoint pushes a MAC session key to its
peer.
– The SYN segment of an Active Open is an

obvious time to push a key. Other events may
require new keys as well.

• The MAC key is encrypted for confidentiality
using a “Key Encrypting Key” (KEK)
– This KEK is a strong key, and does not need to be

changed frequently.

6

Still using a long term key!
What’s different?

• Less burden on the operations staff!
– Because the KEK is not a session key, it does not

need to be changed frequently.
– The KEK can be rolled over when necessary using

the key rollover scheme described in TCP-EA.
• Better MAC keys!

– The generated MAC keys are of better quality than
ones chosen by operations staff.

– The MAC keys will be automatically rolled over
based on a variety of policies

7

Fitting into TCP-EA
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Kind | Length |T|K| Alg ID |Res| Key ID |
+-+
| Authentication Data |

| // |
+-+

• The “K” bit is set to 1
• The Authentication Data field definition is enhanced to

include the encrypted key along with the output of the
MAC algorithm.

8

Resulting Packet Format
 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Kind | Length |T|1| Alg ID |Res| Key ID |
+-+

| Message Authentication Code |

+-+

|Res|KEK Alg ID |Res|KEK Key ID | Encrypted Key ~
+-+

9

Sender Processing

• When a TCP endpoint needs to choose a
new MAC key it takes the following steps:
– Randomly generates a MAC key using a strong

RNG or PRNG algorithm and places it in a TCP-
EA key chain

– Encrypts the MAC key with the KEK, and places it
in the TCP-EA payload

– Creates the packet:
• Sets the K bit to 1
• Performs the MAC calculation described in Section 7 of

TCP-EA

10

Receiver Processing

• Anytime a TCP endpoint receives a TCP-EA
packet with the K bit set to 1:
– Extract and decrypt the MAC key with the KEK

matching the KEK Key ID in the segment
– Performs the MAC calculation described in

Section 7 of TCP-EA.
– If the decrypted key authenticates the packet,

places the new MAC key in a TCP-EA key chain.

11

When should a new MAC key
be chosen?

• When no key is available, or when
policy says a key is about to expire.

• Possible keying events:
– At the beginning of the TCP session
– When a TCP sequence number wraps
– Due to time-based or volume-based policy.

12

Example: Beginning of a TCP
session

Router1 Router2

SYN MAC Option(AuthData|EncKey)

SYN, ACK MAC Option(AuthData)

ACK MAC Option(AuthData)

(Etc.) MAC Option(AuthData)

. . .

13

Better performing MAC
algorithms

• All MAC algorithms take as inputs a key and
the data to be authenticated

• Some MAC algorithms add a third argument
called a “nonce”. The nonce is a value that
MUST be used only once with that particular
key.
– Using the same {key, nonce} twice can result in a

catastrophic cryptographic weakness
– But these algorithms are optimized in h/w or s/w

and tend to be better performing

14

Nonces

• The most obvious means of generating
a set of non-repeating nonces is to use
a sequence number.
– But it must be carried in the packet
– Using the TCP Sequence Number may be

tempting, but isn’t sufficiently trustable.
• I.e., it is a value not under the control of the

TCP-EA Option code, so it can’t guarantee
non-repeatability.

15

Packet Format including a
Sequence Number

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Kind | Length |T|0| Alg ID |Res| Key ID |

+-+

| Sequence Number |

+-+

| Message Authentication Code |

+-+

Of course, when K=1 then an encrypted key payload will
also be included.

16

MAC Algorithms using Nonces

The draft specifies the following
algorithms that take a nonce as input:

• AES-128-GMAC-96
– Optimized for implementation in h/w

• AES-128-UMAC-96
– Optimized for implementation in s/w

17

Questions?

