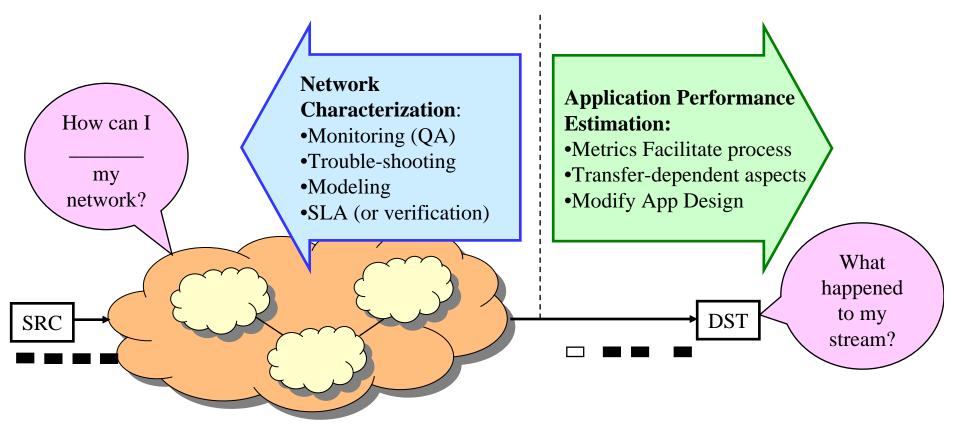
Reporting Metrics: Different Points of View

(or: You Can Run with Scissors)

Al Morton July 10, 2006 draft-morton-ippm-reporting-metrics-00

Background on this Discussion/Draft


- Talk at IETF-65, comparing different ways to implement RFC 3393 on Delay Variation, ending with
 - "How do you want to use the DV Results?"
 - ➔ Two primary ways to measure within the options of 3393
 - Choices have profound implications, made clear in slides
 - Topic for a future draft...

• draft-shalunov-ippm-reporting

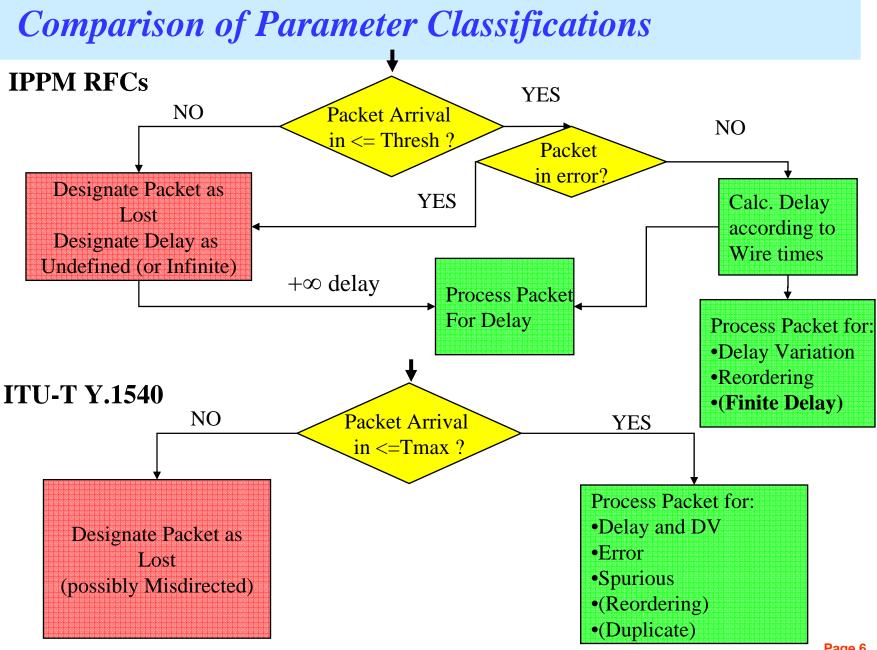
- Real-time display of <u>short-term</u> network state, using only <u>"on-the-fly"</u> calculations
- Stream and Metric parameters chosen for Loss, Delay, Delay Variation, Duplication, and Reordering
- I would have made different choices for many parameters when reporting performance under other circumstances...
- Stas' comments on the Composition Framework
- Side point: Metric Parameters/Options make the IPPM Registry less-effective...

Different Points of View (POV): 2 key ones

- When designing measurements and reporting results, MUST know the Audience to be relevant
- Key question: "How will the results be used?"

Outline

2. Purpose and Scope


Delineate the 2 POV, and their effect on metric and stream params and the desirable statistics for reports.

3. Effect of POV on the Loss Metric

- 3.1. Loss Threshold
- **3.2. Errored Packet Designation**
- **3.3. Causes of Lost Packets**
- 4. Effect of POV on the Delay Metric
 - 4.1. Treatment of Lost Packets
 - **4.1.1. Application Performance**
 - 4.1.2. Network Characterization
 - 4.1.3. Delay Variation
 - 4.1.4. Reordering
 - **4.2. Preferred Statistics**
 - 4.3. Summary for Delay
- 5. Sampling: Test Stream Characteristics
- 6. Reporting Results

Effect of POV on the Loss Metric

- Loss Threshold waiting time for each packet
 - → <u>Network Char</u> distinguish Loss and Long (Finite) Delay
 - → RFC 2680 declines to recommend a value
 - "good engineering, including an understanding of packet lifetimes, will be needed in practice."
 - The methodology says to use "a reasonable value."
 - Routing Loops can cause long delays
 - Packet lifetime is still limited by hops traversed (TTL)
 - (100ms Link + 100ms Queue) x 255 hops = 51 seconds
 - Deliberate Packet Storage is a Replay Attack
 - → <u>Application Perf</u> long thresh. can be revised downward
- Errored Packet Designation
 - "If the packet arrives, but is corrupted, then it is counted as lost."
- Causes of Lost Packets (discard, corruption, failures)

Page 6

Effect of POV on the Delay Metric

One-way Delay RFC 2679

3.4. Definition:

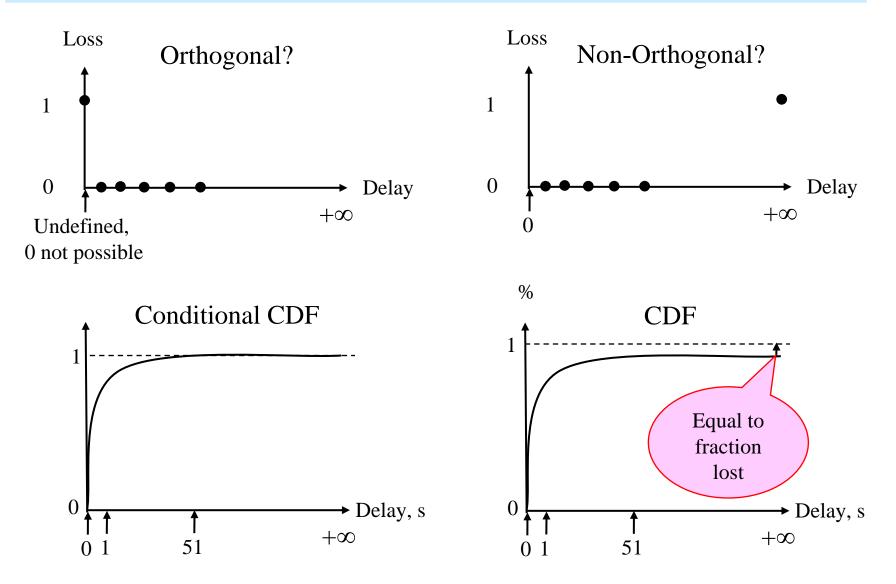
For a real number dT, >>the *Type-P-One-way-Delay* from Src to Dst at T is dT<< means that Src sent the first bit of a Type-P packet to Dst at wire-time* T and that Dst received the last bit of that packet at wire-time T+dT.

>>The *Type-P-One-way-Delay* from Src to Dst at T is <u>undefined (informally, infinite)</u><< means that Src sent the first bit of a Type-P packet to Dst at wire-time T and that Dst did not receive that packet.

- How do these two different treatments align with the needs of the 2 main audiences for measurements?
- How have lost packets been treated in more recent metric definitions, such as delay variation and reordering?

Effect of POV on the Delay Metric (2)

Application Performance


- ➔ Receiver processing "forks" on arrival or time-out
- → Arrive within the time tolerance:
 - + Check for errors
 - + Remove headers
 - + Restore order
 - + Smooth delivery timing (de-jitter buffer)
- → Time-outs spawn other processes (recovery):
 - Re-transmission
 - + Loss concealment
 - + Forward Error Correction
- Therefore: Maintain a distinction between packets that actually arrive within tolerance, and those that do not.
- Measure Delay as a conditional distribution (conditioned on arrival within tolerance)

Effect of POV on the Delay Metric (3)

Network Characterization

- → Assume both Loss and Delay will be reported (at least)
- Packets that do not arrive within the Loss Threshold are reported as Lost, AND
- When they are assigned UNDEFINED delay, then the network's ability to deliver is captured <u>only by the Loss</u> <u>metric</u>
- → If we were to assign Infinite Delay to the Lost Packets, then:
 - Delay results are influenced by packets that arrive, and those that do not.
 - + The delay and loss singletons do not appear orthogonal
 - + The network is penalized in both Loss and Delay metrics

Effect of POV on the Delay Metric (4)

Page 10

Effect of POV on the Delay Metric (5)

• Delay Variation

- → RFC 3393 excludes lost packets from samples (sec 4.1)
- Reduces the event space by conditioning on arrival
- Considers Conditional Statistics
- Allowing packets with Infinite delay to be considered would influence the results in a non-useful way

• Reordering

- The draft excludes lost packets based on a loss threshold, so maintains orthogonality to Loss
- If we fail to distinguish between loss and delay, and assign lost packets some long delay value (e.g., infinity),
- then the sequence numbers of packets assigned a long delay will surely be less than "Next Expected" value (if or when they arrive)
- → and they could be designated reordered.

Status of IPPM Active Work in this area

- New effort chartered on Metric Composition and Aggregation:
 - Framework Draft common concepts and terminology
 - Temporal Aggregation short-term meas. in long-term
 - Spatial Aggregation summarize many paths across net
 - Spatial Composition combine perf. of many sub-paths
 - Defined a "Finite Delay" Metric, enabling computation of the mean delay, and simple aggregation.
 - Avoids the informal assignment of "infinite" delay when a packet is lost – simply leave delay UNDEFINED.
 - + This is consistent with the One-way Delay RFC 2679
- Future of this work will be influenced by the conclusions of this discussion

Preferred Statistics on Delay

Sample Mean is Ubiquitous in Reporting (almost)

- Usually based on a conditional distribution
- → Has some robustness to single errors in large sample
 - + Vast crowds consider it useful (not harmful)
 - + Robustness is both a strength and a weakness
 - + Yes, you can run with scissors
- Median has different properties
- It can be informative to report BOTH Mean and Median
 - → When they differ, there's information ...
- Delay Variation See IETF-65 slides on Jitter Metric Comparison

Summary: Suggestions

- Set a LONG Loss threshold
 - Distinguish between Long Finite Delay and Loss
 - Avoid truncated distributions
- Delay of Lost Packets is UNDEFINED
 - Maintain orthogonality avoid double-counting defects
 - Use conditional distributions and compute statistics
- Report BOTH Loss and Delay
- Report BOTH the Sample Mean and Median.
 - → Comparison of the Mean and Median is informative
 - Means may be combined over time and space (when applicable)
 - Means come with a weighting function for each sample if needed, the sample Size, and Loss simply reduces the sample size
 - Means are more Robust to a single wonky measurement when the sample size is Large
- Move the Industry Away from "Average Jitter"
 - → Use the 99.9%-ile minus minimum PDV
 - ➔ Portray this as a Delay Variation "Range"