Packetization Layer path MTU discovery draft-ietf-pmtud-method-07

Matt Mathis <mathis@psc.edu> John Heffner <jheffner@psc.edu> IETF 66 July 2006 Montréal

Outline

- Draft status
 - Document history and status
 - (extended) WGLC ending July 24
 - Review core algorithms
 - Future opportunities (1 slide)
- Background and Vision (2 slides)
 - One step of a longer process

Document evolution

- Was Intended to replace RFC1191 and RFC1981
- Now an extension to RFC1191 and RFC1981
 - Faster convergence when ICMP processing works
 - Guarantees strictly more robust
 - PLPMTUD ("MTU probing") for ICMP black hole recovery
 - Does not change the algorithm except initial conditions
 - Optimized for easy deployment
- Removed language:
 - Tighten ICMP processing rules (out of scope?)
 - Required complexity to address some obscure failure cases
 - Now mentioned only as a suggestion

The Algorithm

- MTU discovery in TCP or other protocol
 - Responsible for choosing packet boundaries
- Probe with progressively larger packets
 - Choose from range search_low to search_high
 - Successful
 - Raise effective MTU and search_low to probe size
 - Unsuccessful (only the probe was lost)
 - Reduce search_high to probe size (or ICMP PTB size)
 - Suppress Congestion Control (next slide)
 - Inconclusive (lost more than just the probe)
 - Assume congestion or other unrelated loss
 - Pause and probe again

Suppressing Congestion Control

- No window reduction on lost probes if:
 - No other losses
 - Probes are further apart than normal CC loss rate
 - At least as many RTTs as the window size in packets
 - Probing will not cause more loss than the TCP friendly rate
 - This is specified in RFC2119 language
 - Only this part that affects interoperation with other standards
- Note that MTU probing parallels CC
 - Use losses to judge the appropriateness of window and/or MTU adjustments

A question of starting values

- Can start with large effective MTU
 - Fully mimic classical ICMP based PMTUD
 - Depend on ICMP PTB to bring the MTU down
 - On full stop timeout, restart w/ small effective MTU
 - No probing unless there are problems
 - Now the default (change from our initial vision)
- Can start with small effective MTU
 - Start out by probing
 - Does not need ICMP at all
- Can use a heuristic to pick initial eff_MTU

Supported protocols

- Full descriptions for TCP and SCTP
- Discussion of IP fragmentation as a PLP
 - Can continue to use RFC1191
 - Requires an adjunct protocol to probe
- Discussion of datagram/application probing
 - E.g. NFS
- Easy to extrapolate to other protocols
 - Support for a "echo" and "pad" makes it easier
- Pick initial eff_MTU per protocol

Open Issues

- Problems with probing
 - Striping (inverse MUX) across dissimilar MTU
 - Devices that ignore DF
 - Raising MTU causing parametric problems
 - Over/underflow rate adaptation FIFO between clock domains
 - It is not known if these are real worries
 - The goal is to be strictly more robust than 1191
 - Preserving ICMP processing does this without extra complexity
- MIB ?
 - Not enough of the algorithm is specified as a standard
 - No suitable table index

Opportunities

- Can make tradeoffs on ICMP paranoia
 - Application/Vendor/Site can discard suspect ICMP
 - Spurious discards may cause full stop timeouts
 - But will not cause unrecoverable hangs
- Heuristic choice of initial eff_MTU
 - Tradeoff search time vs risk of persistent timeouts
- Long term reduce the reliance on ICMP
 - Future make all ICMP advisory(?)
- Unlock 1500 Byte "Internet Cell Size"

Background and Vision

- The 1500 Byte "Internet Cell Size" is too small
 - 1500B@10 Gb/s is 1.2 μS
 - 53B@OC-3 is 2.7µS
 - See http://www.psc.edu/~mathis/MTU
- Jumbograms are really hard to deploy
 - RFC1191 forces "4 party" reconfiguration
 - Both end-systems
 - All switches and routers on the path
 - All other systems sharing broadcast domains
- Nearly impossible in production networks

The Vision

- PLPMTUD will be deployed
 - Solves current problems with tunnels, etc
 - Does not require uniform MTU per broadcast domain
- Then, for selected device types
 - Set default eff_MTU to 1500
 - Unilaterally set interface MTU large
- Then "easy" to create E2E "jumbo" paths
- Will unlock 1500 Bytes local optima