FECFRAME Introduction

Marshall Eubanks
(with help from Greg Shepherd and Mark Watson)
IETF-66

Why FEC?

- Forward Error (or Erasure) Correction (FEC) is a means of correcting packet loss through built-in redundancy
 - Multicast, UDP Streaming will not protect from packet loss.
 - If all data was on dedicated wireline networks, then a simple "Checksum" approach would suffice
 - Say, for every N packets, XOR them and send that as the Nth+1 packet this will work well if the packet loss rate is << 1/N or less, and packet losses are Poisson in nature
 - Real networks are not so kind...

Why a FEC Framework WG?

- Forward Error (or Erasure) Correction (FEC) is a means of correcting packet loss through built-in redundancy
 - Multicast, UDP Streaming all will not protect from packet loss.
- The RMT WG has produced FEC Building Blocks for FEC of streams
 - draft-ietf-rmt-fec-bb-revised-03.txt
 - Basically at the application layer
- There is great interest in applying this at the transport layer
 - The first task is to set up a Framework.
 - Next task will be to set up Schemes to instantiate that framework.
- Both together will give us FEC Transport

Terminology

- Source data flow: The packet flow or flows to which FEC protection is to be applied.
- Repair data flow: The packet flow or flows carrying forward error correction data
- Source protocol: A protocol used for the source data flow being protected e.g. RTP.
- **Transport protocol**: The protocol used for transport of the source data flow being protected e.g. UDP (unicast or multicast), DCCP.
- **Application protocol:** Control protocols used to establish and modify the source data flow being protected e.g. RTSP.
- **FEC Code**: An algorithm for encoding data such that the encoded dats flow is resilient to data loss or corruption.
- **FEC Scheme**: A specification which defines the additional protocol aspects required to use a particular FEC code with the FEC framework, or (in the context of RMT), with the RMT FEC Building Block.
- Source Block: the group of source data packets which are to be FEC protected as a single block
- **Protection amount:** The relative increase in data sent due to the use of FEC.

Architecture question:

What should be the split of responsibility between FEC Framework and FEC Scheme?

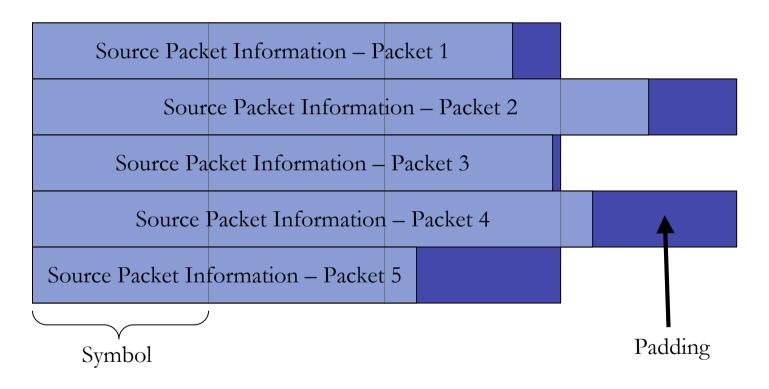
FEC Framework

Common to all FEC codes
Preferably "IPR free"

FEC Scheme

Specific to one FEC code

May include IPR


Work Elsewhere

- What are the potential customers for FEC Transport?
- Multicast or Unicast IPTV
 - High bit rate, relatively low loss regime
 - There is a new SMPTE standard being voted on
 - Not suitable for general use, tailored for MPEG-2
- Wireless streaming
 - There is a new 3GPP FEC standard
 - From Digital Fountain
 - One goal is to have IETF FEC Transport scheme have the 3GPP standard as a special case.

Construction of source block

- In 3GPP specification, the FEC framework is responsible for constructing a source block
 - Source block is a sequence of fixed length "symbols"
 - Padding added to each packet so that packets start on symbol boundaries
 - Symbols are passed to FEC Scheme for encoding/decoding

Source block example (3GPP framework)

FEC Framework knows about "symbols" and adds padding to form source block:

Source block is the concatenation of the 17 symbols above

Alternative proposal

- Responsibility for "padding" and knowledge of "symbols" transferred to FEC Schemes
- Information passed from FEC Framework to FEC Scheme is just the "Source Packet Information" for each packet
 - Symbol size, padding strategy etc. left to FEC
 Scheme

Next steps

- Had our first meeting
 - Seems to be interest in this work.
- Update requirements draft
- Start work on architecture
 - Add to requirements draft?
 - New draft?