
1

Justin Dean/ Brian Adamson
NRL Code 5522

“nrlsmf” Update
(multi-interface support, etc)

68th IETF - Prague
21 March 2007

Overview
• The nrlsmf source code has been updated:

– Multi-interface support, including “gateway” modes
of operation.

– Proper application of IPv6 DPD option header per
SMF Internet Draft

– Proper handling of IPSec packets
• This entails new code architecture and

subsequently usage changes
• MANET PacketBB implementation completed

(“class ManetMsg”, etc) and NHDP
development in progress. (See “protolib” tree
for ManetMsg implementation)

2

The New “nrlsmf” Architecture

“nrlsmf” Implementation
• C++ “class SmfApp” is the working

application daemon:
– Uses ProtoCap and/or ProtoDetour classes for

packet capture and forwarding.
– Provides a ProtoPipe for “remote control” of

operation
• “class Smf” is the core SMF packet

processing module that maintains a list of
Smf::Interfaces with associations from “input”
interfaces to “output” interfaces

• ProtoPktIP classes (IPv4 and IPv6) created
for packet parsing, building, and manipulation
(e.g. DPD Option detection/insertion).

3

Aside: ProtoPkt Classes
• “ProtoPkt” base class for basic C++ wrapper around a buffer (UINT32

aligned)
• ProtoPktETH provided for Ethernet frame parsing/building.
• ProtoPktIP, ProtoPktIPv4, and ProtoPktIPv6 classes for IP packet

manipulation.
– Checksums updated, etc as fields changed
– Methods for iterating and adding extension headers

• A ProtoPktUDP class is also provided.
– UDP checksum calculation/validation methods

• ProtoPktESP, ProtoPktAUTH, and ProtoPktDPD classes are provided
to set/get fields as needed for SMF DPD.

• ProtoPktRTP is also provided (used in Ivox VoIP app)
• The “ManetMsg” classes (PacketBB) are based on ProtoPkt
• The goal was to provide a consistent, easy-to-use, and efficient (high-

performance) mechanism for message/packet parsing/building
– Other protocol messages (MGEN, NORM) could be based upon ProtoPkt

class
– Abstractions of ns-2 and OPNET packet structures could be created with

alternate implementation of ProtoPkt classes …

nrlsmf Functions
• MANET interface support

– Duplicate packet detection
– Supports S-MPR/ECDS/Classical forwarding
– Multi-interface support

• Gateway support
– Forced relaying of multicast packets across and among

multiple interfaces.
– Resequencing or packet marking for external flows injected

into MANET/SMF areas
• “Remote control” interface allows external processes to control

nrlsmf forwarding.
• Packet marking and resequencing for source hosts.

4

SMF-DPD Header Option
• nrlsmf resequencing for IPv6 (source and gateway)

now uses the format with the optional “taggerID” as
described in the current SMF draft.

• nrlsmf will correctly process packets received with the
“taggerID”, but does not yet provide an option to set
the “taggerID” as a gateway.

• DPD for packets with “taggerID” is conducted in the
context of <srcAddr::dstAddr::taggerId>
sequence spaces.
– If a flow is redundantly injected by gateways, it will be

redundantly forwarded.
– Other policies may be explored in the future.

• Note: Gateways will not “tag” flows that are pre-
sequenced by sources (SMF-DPD or IPSec)

IPSec Duplicate Packet Detection

• nrlsmf now detects IPSec treated packets and
uses IPSec sequence information for DPD on
a <srcAddr::dstAddr::SPI> basis.

• IPSec packet flows are not resequenced by
nrlsmf.

• IPv4 and IPv6, ESP and AH IPSec is
supported.

5

The “smf” Command Set
• SMF for MANET Interfaces

(a packet received on a given interface may be retransmitted on that same interface as well as other
interfaces):

– Classical Flooding w/ dup-check among one or more interfaces, including :
smf cf <iface1,iface2,…>

– S-MPR Relaying w/ dup-check among one or more listed interfaces:
smf smpr <iface1,iface2,…>

– E-CDS Relaying w/ dup-check among one or more listed interfaces:
smf ecds <iface1,iface2,…>

– (TBD) Remove any forwarding associations for listed (or “all”) interfaces:
clear {<iface1,iface2,…> | all}

– (TBD) Enable/disable NHDP operation for listed interfaces:
nhdp {on|off},<iface1,iface2,…>

• SMF Gateway Commands:
– Relay w/ dup-check from “srcIface” to listed “dstIfaces”:

smf push <srcIface,dstIface1,dstIface2,...>

– Resequence and relay (no dup-check except when IPv6 DPD present) from “srcIface” to listed “dstIfaces”:
smf rpush <srcIface,dstIface1,dstIface2,...>

– Relay w/ dup-check from any listed interface to all other listed interfaces:
smf merge <iface1,iface2,iface3,iface4,…>

– Resequence and relay (no dup-check except when IPv6 DPD present) from “any listed interface to all other listed
interfaces:
smf rmerge <iface1,iface2,iface3,iface4,…>

– (TBD) Delete “push” or “rpush” associations from “srcIface” to listed “dstIface”:
smf unpush <srcIface,{dstIface1,dstIface2,... | all}>

– (TBD) Delete “merge” or “rmerge” associations from “srcIface” to listed “dstIface”:
smf unmerge <srcIface,{dstIface1,dstIface2,... | all}>

• SMF Forwarding/ Relay Selection Control:
– Enable or Disable forwarding entirely:

smf forward {on | off} (default = “on”)
– Select/unselect as relay for E-CDS (and MPR) forwarding:

smf relay {on | off} (default = “on”)

The “smf” Command Set (cont’d)
• SMF Operating Modes:

– Enable IPv6 packet intercept (via firewall) for resequencing or forwarding
(Note IPv6 is _always_ supported when ETH frame capture is used):
smf ipv6

– Enable/disable intercept and resequence outbound IP packets
 (renumber IPv4 ID field or add DPD option to IPv6 header):
smf resequence {on | off} # (default = “off”)

– Enable/disable IP-based (via raw IP socket) transmission instead of default Ethernet frame transmission for forwarded
packets (_must_ precede any commands w/ interface lists!) :
smf firewallForward {on | off} # (default = “off”)

– Enable/disable IP-based intercept (via firewall) instead of default Ethernet frame capture of incoming packets
(_must_ precede any commands w/ interface lists!) :
smf firewallCapture {on | off} # (default = “off”)

– Specify the “name” of this “nrlsmf” instance (a ProtoPipe listening for commands/control messages is established and the
server (see “smfServer” command) is signaled of the local “nrlsmf” instance name):
smf instance <instanceName>

– Specify “name” (ProtoPipe) of exterior process that may wish to remote control “nrlsmf”
(“nrlsmf” will signal that process with a “smfClient <instanceName>” message via ProtoPipe:
smf smfServer <processName> # (default server process name = “nrlolsr”)

Note: Do we want to be able to specify IPv4-only or IPv6-only operation?

• SMF Debugging Options:
– Set “level” (verbosity) of debug output:

smf debug <debugLevel> # (default = ‘0’)
– Specify a file path for debug output:

smf log <logFile> # (default = “/dev/stderr”)

• SMF Remote-Only Commands (not for command-line use):
– Set list of S-MPR selector MAC addresses (for S-MPR forwarding):

selectorMac <binary macAddrArray>
– Set list of symmetric one-hop neighbor MAC addresses (for S-MPR forwarding):

neighborMac <binary macAddrArray>
– Set list of source MAC addresses for which packets will be ignored (intended for NRL MAC-blocking MNE operation):

mneBlockMac <binary macAddrArray>

6

Some Usage Notes
• IMPORTANT: The "rpush" and "rmerge" commands must be used

very carefully when when used in combination with the
"firewallCapture on" option:

– The "firewallCapture" option doesn't get the srcMacAddr properly:
• On Linux, locally generated packets have some random srcMacAddr from the

'ip_queue' capture mechanism (thus can’t detect it is receiving packets it sent and
the resequencing bypasses DPD and a packet cyclone to TTL=0 results)

• On BSD/MacOS, ProtoDetour doesn’t get the srcMacAddr at all for the
"firewallCapture" mode (“layer 2” firewall rule would be needed).

– So only use "firewallCapture on" when absolutely necessary.
• Also note that raw Ethernet forwarding is _not_ yet supported with

"firewallCapture on" (i.e.,"firewallForward on" MUST be
used w/ "firewallCapture on”)

• For IPv4 resequencing, the ID value of ZERO is avoided since some
operating systems (e.g., BSD) will automatically re-ID packets that
have an ID value of ZERO when "firewallForward on" is used.

• If large multicast packets are sent by hosts that require IP
fragmentation, "firewallCapture on" must be used for SMF
forwarding to work (SMF duplicate packet detection doesn't like
fragments and the default Ethernet frame capture mode gets individual
fragments while the "firewallCapture on" mode gets fully re-
assembled IP packets).

Future Additional Options

• Control of SMF DPD window parameters and prune
timeout, perhaps on a per-interface basis.

• Similarly, there will likely be NHDP parameters (e.g.
“HELLO” interval, etc) that may be useful to control
on a per interface basis.

• Option to load a “config” file for complex
configurations.

• Replication of intercepted outbound locally-generated
multicast packets to multiple interfaces (I.e. instead of
the usual host transmission of multicast on a single
specified interface)

7

 Some IPv6 nrlsmf Issues
• User-space IPv6 operation is more limited:

– IPv6 raw sockets don’t allow full control of IP packet header
as IPv4 raw sockets do.

– Thus the current “firewallForward” using raw socket for
forward doesn’t work.

• BSD firewall “divert” option evidently does not work
with IPv6 (so no BSD/MacOS “firewallCapture” or
“firewallForward”

• This creates a challenge to apply queuing rules or
traffic shaping to forwarded IPv6 traffic:
– Perhaps could finally get around to creating some

“ProtoTap” code using virtual interface mechanisms as a 3rd
packet capture/forwarding approach?

– Or, perhaps there is some way of using virtual interfaces
(run SMF on a virtual interface) and apply queuing or traffic
shaping of traffic from the virtaual interface to/from the real
interface?

SMF Testing
• Functional

– Tested basic suite of options
– “nrlolsr” / “nrlsmf” interaction
– Compatibility with traffic-shaping mechanisms

(TBD)
– BSD and Linux tested. (Win32 TBD).

• Performance
– Characterized raw forwarding performance

(on 100 Mbps Ethernet segment)
– One flow, multiple flows, etc
– 40,000 packets/sec achieved with 100 flows

8

Future Work Items

• More testing including field tests.
• Incorporate NHDP into “nrlsmf” code base

(in progress)
• Explore use of virtual interface mechanisms

(e.g., TAPx) for alternative packet capture
and forwarding.

• Explore use of virtual interfaces to enable
traffic shaping of forwarded IPv6 traffic

Possible Virtual Interface Hack?

