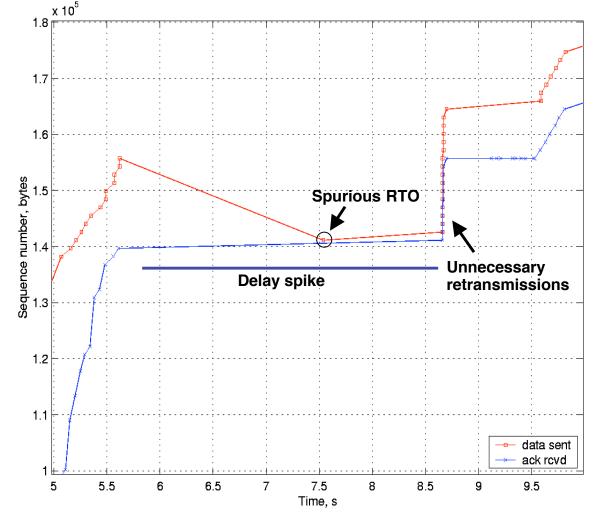
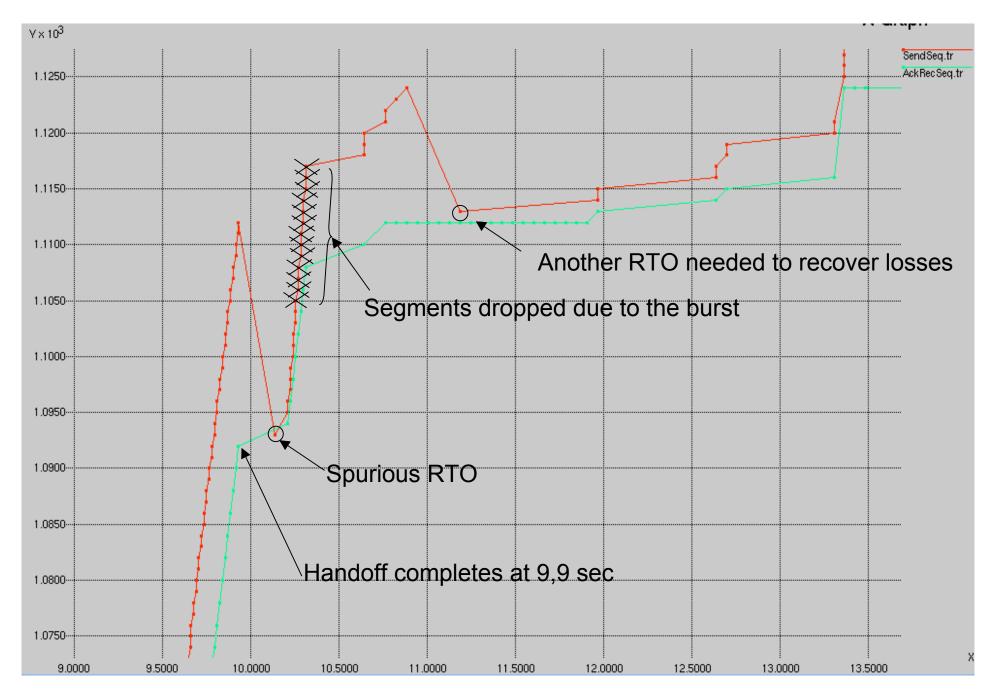
Evaluating F-RTO (RFC 4138)

Markku Kojo, Kazunori Yamamoto, Max Hata, Pasi Sarolahti

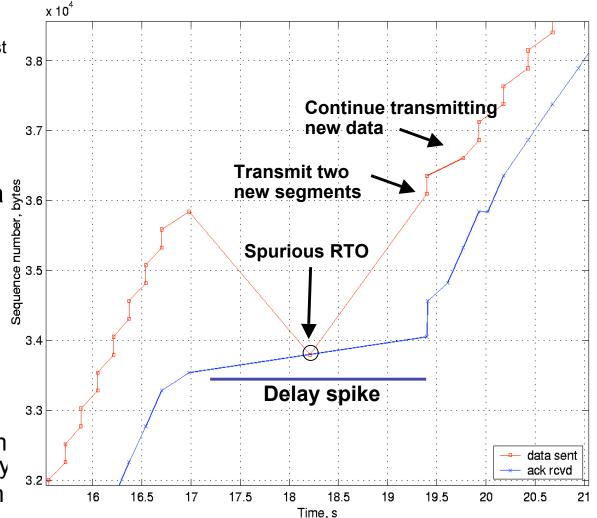

Draft available at: http://www.cs.helsinki.fi/u/sarolaht/frto/


History

- Experimental RFC 4138, Aug 2005
- A number of known F-RTO implementations are out there
- Experimentations have been carried with several implementations showing positive results
- Proposals to advance to PS have been expressed earlier
- Advancing to PS was discussed in IETF-67
 - We were asked to write a document that
 - Points out the problems with regular RTO recovery and usefulness of F-RTO
 - Evaluates F-RTO to show it is not harmful to the network, corner cases included
 - Summarizes experimentation results
- As a first step:
 - We wrote Internet-Draft "Evaluation of RFC 4138"
 - <draft-kojo-tcpm-frto-eval-00b.txt> (not yet in repositories)
 - Available at: http://www.cs.helsinki.fi/u/sarolaht/frto/

Spurious RTOs on Regular TCP

- Delay spikes occur on wireless networks due to
 - handoffs
 - link-layer error recovery
 - bandwidth variation
- Delay spike may trigger TCP retransmission timer
- Problems:
 - Regular TCP sender retransmits whole window unnecessarily in slow start
 - Network resources are wasted
 - Dishonors packet conservation principle
 - In many cases severe performance penalty to the TCP flow



Spurious RTO due to vertical handoff from a low-latency to high-latency access link

Spurious RTO and F-RTO

- When delay spike causes RTO to expire, retransmit 1st unacknowledged segment
- 1st ACK acknowledges the retransmission: send 2 new segments
- 2nd ACK acknowledges data that was not retransmitted: RTO is declared spurious
- Benefits of F-RTO:
 - Avoids unnecessary retransmissions
 - Allows adhering to packet conservation principle
 - Prevents the TCP flow from severe performance penalty
 - Enables RTT samples from delayed segments

Can F-RTO be harmful? NO!

- If RTO is not spurious (or F-RTO fails to detect)
 - F-RTO reverts back to traditional RTO recovery
 - Exactly same amount of segments get transmitted
- Hidden losses when F-RTO declares RTO spurious
 - A few known scenarios
 - 1. Loss of the unnecessary RTO retransmission
 - 2. Severe reordering
 - retransmitted segment bypasses the full window of original segments
 - 3. Malicious receiver
 - Delays ACKs until RTO expires and retransmitted segment arrives
 - ACKs data it has not received
 - 1 & 2 considered as rare corner cases; won't harm TCP flow
 - With 3 benefit is questonable; concealing losses harms TCP flow
 - None of these can harm the network, if conservative response is taken
 - F-RTO sender is recommended to take the spurious RTO as a congestion signal

Next Steps

- Revise RFC 4138 targeting at PS
 - Specify basic algorithm and TCP only
 - Leave the following as experimental and do not include in the Standards Track specification
 - F-RTO with SCTP
 - SACK-Enhanced variant of F-RTO
 - Response?
 - do not specify any response in the new draft, or
 - recommend implementing conservative response, i.e., take spurious RTO as a congestion signal
 - possibly include guidelines for a conservative response
 - Maybe specify a conservative response in a separate document?