# A taxonomy

for

New Routing & Addressing Architecture Designs

Lixia Zhang & Scott Brim RRG Meeting @ IETF69 July 27, 2007

### Goal

- Build a framework, to allow us to
  - position each proposed solution in the design space
  - facilitate the evaluation of various design tradeoffs
- How:
  - Identify the solution directions
  - Find the open issues to be addressed
  - Find the dimensions of the design space
  - Look thru proposed solutions, find missing points
    *Iterate !*

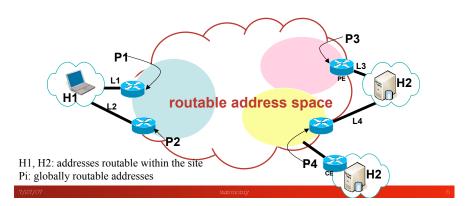
## Routing system scalability

(GRA: Globally Routable Address space)

- Problem: Too many entries in GRA, too many updates
- Solution space:
  - A. Reduce the table size, or
  - B. Find a way to handle large routing tables

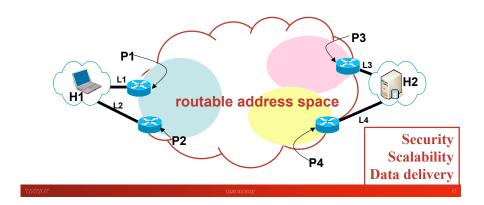
## The proposed solutions

- (so far) fall into the first category, which can be further sorted into:
- A1: Only using topologically aggregatable addresses Multihomed sites → multiple prefixes


A1a: the site uses site-local prefix internally (GSE) A1b: the site uses GRA prefixes internally (SHIM6, Six/One)

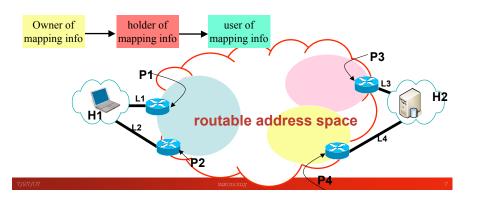
- A2: Moving "edge" prefixes out of the global routing system
  - Find "edge" attachment points in the routable space
  - Deliver packets by tunneling to their attachment points

#### A rough picture for solution space discussion


*grossly simplified*; the boundary between GRA and the rest of the world (ROW) vary among different solutions

- Ranging from inside hosts (SHIM6) to stopping at site border (GSE, LISP)




## Common issues among the solutions

- Q1: How to get mapping info
- Q2: How to detect failure (e.g. P3 unreachable, or L3 failure)
- Q3: How to handle failure



## Q1. How to get the mapping info

- Q1.1 How to inject the mapping info into the system
- Q1.2 Where to distribute, who holds the mapping info
- Q1.3 Where/who makes selection decision from multiple (Pi  $\rightarrow$  Hi)



### Q1.1 How to inject mapping info into the system

- Mapping info:
  - A1: DNS name  $\rightarrow$  GRA address(es)
  - A2: ROW prefix  $\rightarrow$  GRA address(es)
- Injection
  - Manual configuration
  - Automated protocol exchange
- Important consideration: Authentication of mapping info



# Q1.2 where to distribute mapping info

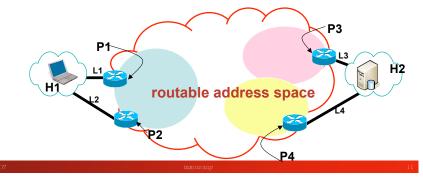
- Flood
- Push: to *specific node*(s)
- Poll/look-up:

A1: by hosts

A2: by site edge router, or any "responsible" router

- What is the system structure each of the above operates in?
  - Combining mapping info into DNS
  - Establishing a new/separate mapping info system
  - Combining mapping info with routing
- What is the trust model/relation between neighbor nodes in the distribution chain; how to insure info authenticity

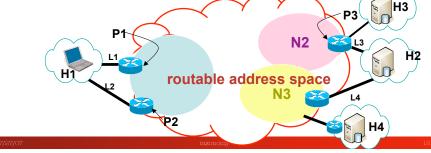



# Q1.3 Where/who makes selection decision from multiple (Pi $\rightarrow$ Hi)

- The holder is a database, a user (e.g. host, or ITR) receives complete (Hi → Pi's) mapping
- The holder makes decision on which mappings are given to which ITR

| Owner of mapping info | <br>holder of mapping info | <br>user of mapping info |  |
|-----------------------|----------------------------|--------------------------|--|
|                       |                            |                          |  |

# Q2. How to detect failures


- A1: host detects failures
- A2: Look at the picture again:
  - failures within GRA space: can do business as usual (or can do better!)
  - failures at Pi or Li: need new solutions



# Q2: means for failure detection

Data-traffic triggered failure detection

- A1: up to transport/upper level protocols
- A2:
  - data traffic triggered ICMP message (or equivalent)
  - Piggyback TR status on data packets
  - Indirect inference
    - e.g. ICMP triggered by packets to H2 can be applied to H3 ETR selection



# Q3: How to handle failures

- A1: host handles detection and recovery
  - Potentially duplicate detection efforts by multiple hosts
    - e.g. multiple hosts suffer data losses caused by the same failure before they can react

### A2:

- Q3.1 Which nodes to inform
- Q3.2 How to handle in-flight packets
- *Shared question*: which party holds the temporary failure info, and how to promptly remove it when failure recovered?

## Summary of questions

#### Q1: How to get mapping info

- 1.1 How to inject the mapping info into the system
- 1.2 Where to distribute, who holds the mapping info
- 1.3 Where/who makes selection decision from multiple (Pi $\rightarrow$  Hi)
- Q2: How to detect failure
- Q3: How to handle failure
  - 3.1: Which nodes to inform
  - 3.2: How to handle in-flight packets
  - 3.3: which party holds the temporary failure info, and how to promptly remove it when failure recovered?

### Evaluation criteria

- Data delivery performance
  - Delay due to mapping look up
  - Delay due to suboptimal paths
  - Loss due to lack of mapping info
  - Loss during transient failure
  - Traffic concentration
- Scalability: with regard to the sizes of GRA system and "edge" population
  - Table size at mapping info holding nodes
  - Control data distribution overhead
- How to secure mapping info distribution

# **Stop here**