Rolland Vida

Budapest University of Technology and Economics

vida@bme.tmit.hu

Presented by Andrei Gurtov

Outline

Multicast models

- Problems with the current models
- Host Identity Namespace
- Host Identity Specific Multicast model
- Conclusions

Current Multicast Models

Any Source Multicast (ASM)

- Oldest model
- Anyone can join a multicast session
- Anyone can send to a multicast address
- Session identified by a multicast group address (G)

Source Specific Multicast (SSM)

- Newer model
- Anyone can join a multicast session
- Session identified by the source's IP address and a multicast group address (S, G)

Only the source S can send to the group

Problems with the models (I)

Lack of network level authentication mechanisms

- There's no control over who can listen to a session
 - □ If a receiver asks for it, its router will join the tree
 - Multicast Control Protocol (MCOP)
 - Some kind of access control
 - Gives access to subnets, not individual receivers
 - Not used

In ASM there's no control over who can be a source

In SSM the control is based on the source IP address

Easy to cheat – IP address spoofing

No appropriate accounting model can be built

Problems with the models (II)

Hard to handle IP address changes when...

- Moving into another domain (mobility)
 - Mobile receivers
 - Mobile sources (e.g., video conferencing, online gaming)
- DHCP assigns a new IP address even if the host (source/receiver) does not move
- Multi-homed hosts can rapidly change from one interface to another
- Change from an IPv4 to an IPv6 domain

Handling address changes in multicast

Receiver side

- Remote Subscription
 - A new branch of the multicast tree is built
 - In certain cases it might be long
- Bi-directional Tunneling
 - □ The original tree is extended with tunnels
 - □ Triangular routing, inefficient

Source side

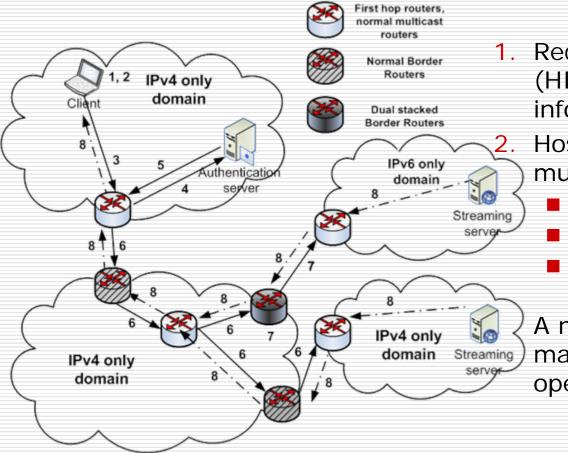
- No problem in ASM, treated as a new source
- In SSM, packets accepted only from the original source address
 - □ The entire tree has to be rebuilt!
 - □ Time consuming, service interruption

Problems with the models (III)

IPv4 / IPv6 trees

- No solution for an IPv4 capable client to subscribe and receive an IPv6 multicast stream
- Multicast routers can't build dual-stack multicast trees
 - In one session, only one kind of IP identifiers can be used
- Tunneling through domains with different IP version can be done, but significantly decreases the efficiency

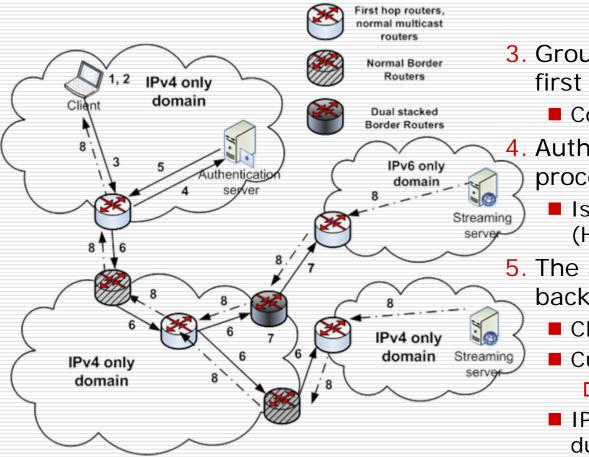
Host Identity Namespace


- Some of these problems are due to the dual-role of IP addresses
 - Identifies the host itself
 - Identifies the location / routing functions
- Host Identity Namespace
 - IP address only used for routing
 - Host Identity Tags (HIT)
 - □ 128 bit long
 - Hashed from the Host Identity
 - Cryptographic identities, public keys

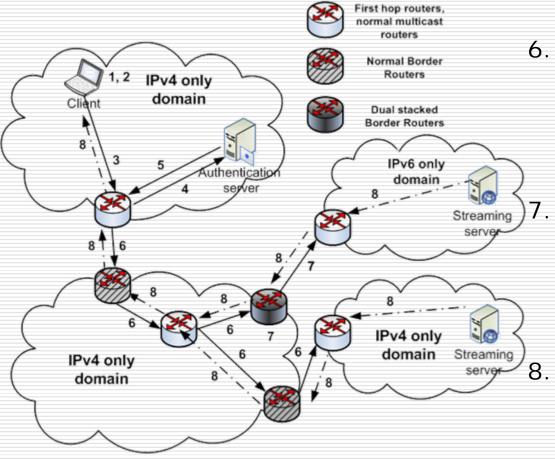
Identifiers

Source address (S) -> Source HIT (HIT-S)
 HIT-S never changes

Group address (G) -> Session ID (SID)
 SID independent from the IP version of the multicast stream, 26 bit long


HIT-R – HIT of the Receiver

HISM Process


- Receiver application gives the (HIT-S, SID) couple or the SID information
 - Host Identity layer maps a) multicast address from the SID
 - IPv4: 1110 | 11 | 26 bit SID
 - IPv6: FF | FF | fill pattern | SID
 - Subranges of the multicast address range reserved for HISM

A new entry, corresponding to the mapped address, is created in the operating system's registries

HISM Process

3. Group management report sent to first hop multicast router (FHR) Contains the HIT-R, HIT-S, SID 4. Authentication and authorization process, based on the HIT-R Is HIT-R allowed to receive (HIT-S, SID)? 5. The authentication server gives back the following information: Client is authorized or not Current Source IP address □ mapped from the HIT-S IP address of the nearest dual-stacked edge router

HISM Process

- 6. If client authorized, the FHR starts the tree building process
 - Sends PIM Join towards the source, if IP versions match
 - Sends PIM join towards the dual-stack edge router, if not
 - . Dual-stack edge router handles the IP version conversion and starts building the other part of the multicast tree
 - Sends PIM join towards the source
- 8. The Join reaches the source's FHR, or an on-tree router
 - multicast data starts flowing on the new tree branch

Modifications to be done

Application level

- Application should be capable of handling HITs and SIDs
- Special reserved address range for HISM

Group management issues

- IGMP for IPv4, MLD for IPv6
- New unified group management for both IPv4, IPv6 that also supports the HISM model

VIGMP (Version Independent Group Management Protocol)

- Client must give it's HIT-R for authentication
- Support for (HIT-S, SID), (*, SID), (S, G) and (*, G) addressing

VIGMP Query

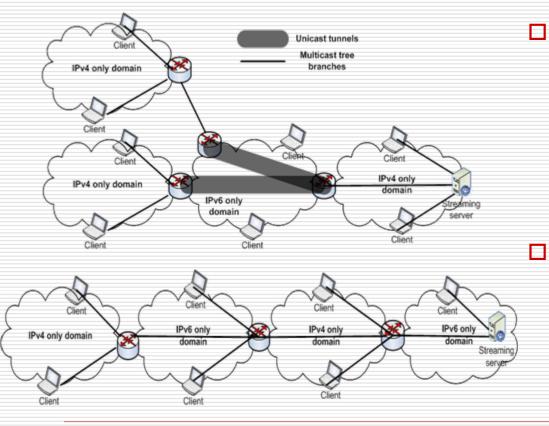
	Hosts that do not implement	Type = 130	Code	Checksum		
	VIGMP can still understand	Maximum Response Code H		Reserved	Reserved	
		Session ID			RSVD	
	Reply with IGMP (v4) or MLD	RSVD S QRV	QQIC		Number of Source	es (N)
	(v6) Reports	HIT-S [1]				
	VIGMP hosts reply with					
	VIGMP Report	1111-5 [1]				
	The H flag denotes HISM					
•••	0					
	compatibility	HIT-S [2]				
	Replaces a reserved bit, not					
	checked by "old" hosts					
-	0			•		
ш	Multicast Address \rightarrow SID					
	Source Address → HIT-S					
		HIT-S [N]				

VIGMP Report

	Type = 143	H Reserved	Checksum	Record Type	Aux. Data length	Number of Source	es (N)
	Res	Reserved Nr. of Session Reports (M)		Session ID Reser			Reserved
Session Record [1]				HIT-S [1]			
	· · ·						
		Session R	: Record [M]		ніт-	S [N]	
] H flag	g signalli	ng the HISM		нг	T-R	

- H flag signalling the HISM compatibility
- Session Records contain the multicast session information
- □ VIGMP Session Record
 - Multicast Address → SID
 - Source Address → HIT-S
 - Additionally contains the HIT-R

Modifications to be done


- Multicast routing Extension to the PIM-SSM protocol
 - First hop router functions
 - Handling of the new group management messages
 - Initiating the authentication process
 - Initiating the tree building process
 - Core PIM routing
 - New identifiers used for maintaining multicast trees:
 - SIDs, HITs HIT-S SID Input interface Output interface
 - No rebuilding if the source address changes
 - E.g., new IP address on the same subnet, given by DHCP
 - No HIP stack in the core routers
 - Source IP address is the destination address of PIM Join messages

2007. 12. 06.

The tree is built based on the IP addresses December 2007

Modifications to be done

Dual-stack border routers

- Clients in domains with different IP versions can join the same tree with the help of dual-stack border routers
 - Translate the tree building messages
 - Translate all multicast data on the way back to the clients
- Native dual-stacked multicast trees can be built
 - No tunneling is needed

Test implementations

VIGMP software	Session Edit View Bookmarks Settings Help			
C code under Linux	HIT-S: 54571009958995756515898995157589955101985897505398585298515658505048101585051100100 SA: 19216851 SA6: 00000000000000000 SID: 1101010 BE_IF: 4 KI_IF: 5 OLD: -1 CHANGE: f HIT-S: 54571009958995756515898995157589955101985897505398585298515658505048101585051100100 SA: 19216861 SA6: 000000000000000000000000000000000000			
Fully functional	-1 0LD: -1 CHANGE: f HIT-S: 000000000000000000000000000000000000			
PIM-HISM software	HIT-S: 000000000000000000000000000000000000			
C code under Linux	root@turbo.laptop://iome/turbo/VIGMP/kliensek - 0 × Fájl Szerkesztés Nézet Jerminál Lapok Súgó - 1 KI_IF:			
Fully functional	root@turbo-laptop:/home/turbo/VIGMP/kliensek# ./ipv6-kliens - 1 Kl_lF:			
Test client software	Beérkező csomagok figyelése megkezdődött! - csomag figyelő szál PID = 5339 - leütés figyelő szál PID = 5340			
Authentication software	Add meg küldendő csomag típusát! (1) INCLUDE (2) ADD NEW SOURCES (3) BLOCK OLD SOURCES: 1 Add meg SID,HIT-S csatornát! (1) ffaa::0011:1111 - ASM			
Only test version	<pre>(2) ffaa::002:2222 - ASM (3) ffaa::003:3333 - ASM (4) ffaa::0011:1111 69dc:c983:bc39:c7eb:a25d:4b38:220e:23cd (5) ffaa::0011:1111 69dc:c983:bc39:c7eb:a25d:4b38:220e:23aa (6) ffaa::0011:1111 69dc:a983:ac39:a7eb:a25d:ab38:a20e:aaaa (7) ffaa::0011:1111 6911:1111:1111:1111:1111:1111</pre>			
	<pre>(8) ffaa::0011:1111 69dc:c983:bc39:c7eb:a25d:4b38:220e:23cd 69dc:c983:bc39:c7eb:a25d:4b38:220e:23aa (9) ffaa::0011:1111 69dc:c983:bc39:c7eb:a25d:4b38:220e:23cd 69dc:a983:ac39:a7eb:a25d:4b38:220e:23aa (10) ffaa::0011:111 69dc:c983:bc39:c7eb:a25d:4b38:220e:23cd 69dc:c983:bc39:c7eb:a25d:4b38:220e:23aa 69dc:a983:ac39:a7eb:a25d:4b38:220e:23aa 69dc:a983:ac39:a7eb:a25d:ab38:a20e:aaaa 6911:1111:1111:1111:1111:1111:1111:1111</pre>			

IRTF Meeting, Vancouver, December 2007 .

Summary

A new multicast model: Host Identity Specific Multicast (HISM)

- Support for native dual-stacked multicast trees
- A new unified group management protocol
- Provides authentication functionalities
- No tree rebuilding if addresses change

For more information...

Zsolt Kovacshazi, Rolland Vida, "Host Identity Specific Multicast", in Proc. of Third International Conference on Networking and Services (ICNS 2007), Athens, Greece, June 2007.

Received Best Paper Award

Comments are welcome to vida@tmit.bme.hu