Inter-Domain Routing

IETF 70
Geoff Huston
APNIC

December 2007
Agenda

- Scope
- Background to Internet Routing
- BGP
- IDR
- Views, Opinions and Comments
Agenda

- Scope
- Background to Internet Routing
- BGP
- Current IETF Activities
- Views, Opinions and Comments
Today, let's talk about …

- How self-learning routing systems work
- The Internet’s routing architecture
- The design of BGP as our current IDR of choice
- BGP features
- Inter-Domain Routing
- Possible futures, research topics and similar
We won’t be talking about …

- How to write a BGP implementation
- How to configure the control knobs on your favourite vendor’s BGP
- Operating your network
- Peering and Transit
- Debugging your favourite routing problem!
Agenda

- Scope
- Background to Internet Routing
- BGP
- Current IETF Activities
- Views, Opinions and Comments
Background to Internet Routing

- The routing architecture of the Internet is based on a decoupled approach to:
 - Addresses
 - Forwarding
 - Routing
 - Routing Protocols
- There is no single routing protocol, no single routing configuration, no single routing state and no single routing management regime for the entire Internet.
- The routing system is the result of the interaction of a collection of many components, hopefully operating in a mutually consistent fashion!
IP Addresses

- IP Addresses are not locationally significant
 - An address does not say “where” a device may be within the network
 - An address does not determine how a packet is passed across the network
 - Any address could be located at any point within the network

- It’s the role of the *forwarding system* to direct packets to this location
Forwarding

- Every IP routing element is equipped with one (or more!) forwarding tables.
 - The forwarding table contains mappings between address prefixes and an outgoing interface
 - Switching a packet involves a lookup into the forwarding table using the packet’s destination address, and queuing the packet against the associated output interface
 - End-to-end packet forwarding relies on mutually consistent populated forwarding tables held in every routing element

- The role of the *routing system* is to maintain these forwarding tables
The routing system is a collection of switching devices that participate in a self-learning information exchange (through the operation of a routing protocol).

There have been many routing protocols, there are many routing protocols in use today, and probably many more yet to come!

Routing protocols differ in terms of applicability, scale, dynamic behaviour, complexity, style, flavour and colour.
Routing Approaches

- All self-learning routing systems have a similar approach:
 You tell me what you know and I’ll tell you what I know!

- All routing systems want to avoid:
 - Loops
 - Dead ends
 - Selection of sub-optimal paths

- The objective is to support a distributed computation that produces consistent “best path” outcomes in the forwarding tables at every switching point, at all times
 - where “best” is a flexible term requiring consistent interpretation
Distance Vector Routing

- I’ll tell you my “best” route for all known destinations
- You tell me yours
- If any of yours are better than mine I’ll use you for those destinations
- And I’ll let all my other neighbours know
Relative properties - DV

- Distance Vector routing
 - Is simple
 - Can be very verbose (and slow) as the routing system attempts to converge to a stable state
 - Finds it hard to detect the formation of routing loops
 - Ensures consistent forwarding states are maintained (even loops are consistent!)
 - Can’t scale
Link State Routing

- I’ll tell everyone about all my connections (links), with link up/link down announcements.
- I’ll tell everyone about all the addresses I originate on each link.
- I’ll listen to everyone else’s link announcements.
- I’ll build a topology of every link (map).
- Then I’ll compute the shortest path to every address.
- And trust that everyone else has assembled the same map and performed the same relative path selection.
Relative properties - LS

- Link State Routing
 - Is more complex
 - Converges extremely quickly
 - Should be loop-free at all times
 - Does not guarantee consistency of outcomes
 - Relies on a “full disclosure” model and policy consistency across the routing domain
 - Still can’t scale
Routing Structure

- The Internet’s routing architecture uses a 2-level hierarchy, based on the concept of a routing domain ("Autonomous System")
- A “domain” is an interconnected network with a single exposed topology, a coherent routing policy and a consistent metric framework

- Interior Gateway Protocols are used within a domain
- Exterior Gateway Protocols are used to interconnect domains
IGPs and EGPs

- IGPs
 - Distance Vector: RIPv1, RIPv2, IGRP, EIGRP
 - Link State: OSPF, IS-IS

- EGPs
 - Distance Vector: EGP, BGPv3 BGPv4
Agenda

- Scope
- Background to Internet Routing
- BGP
- Current IETF Activities
- Views, Opinions and Comments
Why BGP?

- Simple protocol to implement and operate
- Very simple distance metric
- Occludes local policies from external inspection
- Limited inter-SP coordination required
- Mature deployment
Border Gateway Protocol - BGP

- Developed as a successor to EGP
 - Version 1
 - RFC1105, Experimental, June 1989
 - Version 2
 - RFC1163, RFC 1164, Proposed Standard, June 1990
 - Version 3
 - RFC1267, Proposed Standard, October 1991
 - Version 4
 - RFC1654, Proposed Standard, July 1994
 - RFC1771, Draft Standard, March 1995
 - RFC4271, Draft Standard, January 2006
BGPv4

- BGP is a Path Vector Distance Vector exterior routing protocol
- Each routing object is an address and an attribute collection
 - Attributes: AS Path vector, Origination, Next Hop, Multi-Exit-Discriminator, Local Pref, ...
- The Path Vector is a vector of AS identifiers that form a viable path of AS transits from this AS to the originating AS
 - Although the Path Vector is only used to perform loop detection and route comparison for best path selection
BGP is an inter-AS protocol

- Not hop-by-hop
- Addresses are bound to an “origin AS”
- BGP is an “edge to edge” protocol
 - BGP speakers are positioned at the inter-AS boundaries of the AS
 - The “internal” transit path is directed to the BGP-selected edge drop-off point
 - The precise path used to transit an AS is up to the IGP, not BGP

- BGP maintains a local forwarding state that associates an address with a next hop based on the “best” AS path
 - Destination Address -> [$BGP \text{ Loc-RIB}$] -> Next Hop address
 - Next_Hop address -> [$IP \text{ Forwarding Table}$] -> Output Interface
BGP Example

bgpd# show ip bgp
BGP table version is 0, local router ID is 203.119.0.116
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 0.0.0.0</td>
<td>193.0.4.28</td>
<td>0</td>
<td>34225</td>
<td>1299</td>
<td>i</td>
</tr>
<tr>
<td>*> 3.0.0.0</td>
<td>193.0.4.28</td>
<td>0</td>
<td>701</td>
<td>703</td>
<td>80 i</td>
</tr>
<tr>
<td>*> 4.0.0.0</td>
<td>193.0.4.28</td>
<td>0</td>
<td>7018</td>
<td>703</td>
<td>80 i</td>
</tr>
<tr>
<td>*> 4.0.0.0/9</td>
<td>193.0.4.28</td>
<td>0</td>
<td>7018</td>
<td>3356</td>
<td>i</td>
</tr>
<tr>
<td>*> 4.0.0.0/24</td>
<td>193.0.4.28</td>
<td>0</td>
<td>7018</td>
<td>3356</td>
<td>i</td>
</tr>
<tr>
<td>*> 4.23.112.0/24</td>
<td>193.0.4.28</td>
<td>0</td>
<td>7018</td>
<td>174</td>
<td>21889 i</td>
</tr>
<tr>
<td>*> 4.23.113.0/24</td>
<td>193.0.4.28</td>
<td>0</td>
<td>7018</td>
<td>174</td>
<td>21889 i</td>
</tr>
<tr>
<td>*> 4.23.114.0/24</td>
<td>193.0.4.28</td>
<td>0</td>
<td>7018</td>
<td>174</td>
<td>21889 i</td>
</tr>
<tr>
<td>*> 4.36.116.0/23</td>
<td>193.0.4.28</td>
<td>0</td>
<td>7018</td>
<td>174</td>
<td>21889 i</td>
</tr>
<tr>
<td>*> 4.36.116.0/24</td>
<td>193.0.4.28</td>
<td>0</td>
<td>7018</td>
<td>174</td>
<td>21889 i</td>
</tr>
<tr>
<td>*> 4.36.117.0/24</td>
<td>193.0.4.28</td>
<td>0</td>
<td>7018</td>
<td>174</td>
<td>21889 i</td>
</tr>
<tr>
<td>*> 4.36.118.0/24</td>
<td>193.0.4.28</td>
<td>0</td>
<td>7018</td>
<td>174</td>
<td>21889 i</td>
</tr>
</tbody>
</table>
BGP is a Distance Vector Protocol

- Maintains a collection of local “best paths” for all advertised prefixes
- Passes incremental changes to all neighbours rather than periodic full dumps
- A BGP update message reflects changes in the local database:
 - A new reachability path to a prefix that has been installed locally as the local best path (update)
 - All local reachability information has been lost for this prefix (withdrawal)
iBGP and eBGP

- eBGP is used across AS boundaries
- iBGP is used within an AS to synchronise the decisions of all eBGP speakers
 - iBGP is auto configured (via a match of MyAS in the OPEN message)
 - iBGP peering is manually configured
 - iBGP needs to emulate the actions of a full mesh
 - Typically configured as a flooding hierarchy using Route Reflectors
- iBGP does not loop detect
- iBGP does not AS prepend
iBGP and eBGP

AS1 - AS2

AS1 - AS3

AS1 - AS4
BGP Transport

- TCP is the BGP transport
 - Port 179
 - Reliable transmission of BGP Messages
 - Messages are never repeated!
 - Capability to perform throttling of the transmission data rate through TCP window setting control
- May operate across point-to-point physical connections or across entire IP networks
Messaging protocol

- BGP is not a data stream protocol
- The TCP stream is divided into messages using BGP-defined “markers”
- Each message is a standalone protocol element
- Each message has a maximum size of 4096 octets
UPDATE: 2007/07/15 01:46
ATTRS: nexthop 202.12.29.79,
origin i,
aggregated by 64642 10.19.29.192,
path 4608 1221 4637 3491 3561 2914 3130
U_PFX: 198.180.153.0/24

UPDATE: 2007/07/15 01:46
W_PFX: 64.31.0.0/19,
64.79.64.0/19
64.79.86.0/24

UPDATE: 2007/07/15 01:46
ATTRS: nexthop 202.12.29.79,
origin i,
aggregated by 65174 10.17.204.65,
path 4608 1221 4637 16150 3549 1239 12779 12654
U_PFX: 84.205.74.0/24

UPDATE: 2007/07/15 01:47
ATTRS: nexthop 202.12.29.79,
origin i,
aggregated by 64592 10.17.204.65,
path 4608 1221 4637 4635 34763 16034 12654
U_PFX: 84.205.65.0/24
BGP Message Format – Marker

<table>
<thead>
<tr>
<th>Length (2 Octets)</th>
<th>Type (1 Octet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 – OPEN</td>
</tr>
<tr>
<td></td>
<td>2 – UPDATE</td>
</tr>
<tr>
<td></td>
<td>3 – NOTIFICATION</td>
</tr>
<tr>
<td></td>
<td>4 – KEEPALIVE</td>
</tr>
<tr>
<td></td>
<td>5 – ROUTE-REFRESH</td>
</tr>
</tbody>
</table>
Mark

- Mark is a record delimiter
 - Value all 1’s (or a security encoded field)
- Length is message size in octets
 - Value from 19 to 4096
- Type is the BGP message type
BGP OPEN Message

<table>
<thead>
<tr>
<th>Field</th>
<th>Length (2 Octets)</th>
<th>Type =1 (Open)</th>
<th>Version (1 Octet)</th>
<th>My AS (2 Octets)</th>
<th>Hold Time (2 Octets)</th>
<th>BGP Identifier (4 Octets)</th>
<th>Opt Length (1 Octet)</th>
<th>Optional Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marker (16 Octets)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Open

- Session setup requires mutual exchange of OPEN messages
- Version is 4
- MyAS field is the local AS number
- Hold time is inactivity timer
- BGP identifier code is a local identification value (loopback IPv4 address)
- Options allow extended capability negotiation
 - E.g. Route Refresh, 4-Byte AS, Multi-Protocol
BGP KEEPALIVE Message

Marker (16 Octets)

Length = 19 Type = 4 Keepalive
 intermittently sending a message whose purpose is to prevent the remote end triggering an inactivity session reset.
BGP UPDATE Message

<table>
<thead>
<tr>
<th>Marker (16 Octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (2 Octets)</td>
</tr>
<tr>
<td>Withdrawn Prefixes Length</td>
</tr>
<tr>
<td>Withdrawn Prefixes List</td>
</tr>
<tr>
<td>Path Attributes Length (2 Octets)</td>
</tr>
<tr>
<td>Path Attributes List</td>
</tr>
<tr>
<td>Updated Prefixes List</td>
</tr>
</tbody>
</table>

Prefix List Entry

<table>
<thead>
<tr>
<th>Length (1 Octet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
</tr>
</tbody>
</table>

Attribute List Entry

<table>
<thead>
<tr>
<th>Flags (1 Octet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type (1 Octet)</td>
</tr>
<tr>
<td>Length (1 or 2 Octet)</td>
</tr>
<tr>
<td>Value</td>
</tr>
</tbody>
</table>
UPDATE

- Used for announcements, updates and withdrawals
- Can piggyback withdrawals onto announcements
- List of withdrawn prefixes
- List of updated prefixes
- Set of “Path Attributes” common to the updated prefix list
Update Path Attributes

- Additional information that is associated with an address
- Attributes can be:
 - Optional or Well-Known
 - Transitive or Point-to-point
 - Partial or Complete
 - Extended Length or not
Update Path Attributes

- **Origin**: how this route was injected into BGP in the first place
- **Next_Hop**: exit border router
- **Multi-Exit-Discriminator**: relative preference between 2 or more sessions between the same AS pair
- **Local Pref**: local preference setting
- **Atomic Aggregate**: Local selection of aggregate in preference to more specific
- **Aggregator**: identification of proxy aggregator
- **Community**: locally defined information fields
- **Destination Pref**: preference setting for remote AS
Local Pref Example
MED Example
AS Path

- **AS_PATH**: the vector of AS transits forming a path to the origin AS
 - In theory the BGP Update message has transited the reverse of this AS path
 - In practice it doesn’t matter
 - The AS Path is just a loop detector and a path metric
AS Path

- AS Path is a vector of AS values, optionally followed by an AS Set.

- AS Set: If a BGP speaker aggregates a set of BGP route objects into a single object, the set of AS’s in the component updates are placed into an unordered AS_Set as the final AS Path element.
AS Path Example

AS1

10.1.0.0/17
AS 1

AS 2

10.1.0.0/17
AS 2, AS 1

AS 3

10.1.128.0/17
AS 3

AS 4

10.1.0.0/16
AS 4, {AS 1, AS 2, AS 3}

AS 5
BGP NOTIFICATION Message

Marker (16 Octets)

<table>
<thead>
<tr>
<th>Length (2 Octets)</th>
<th>Type =3 (Notify)</th>
<th>Code (1 Octet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcode (1 Octet)</td>
<td>Optional Data</td>
<td></td>
</tr>
</tbody>
</table>

...
BGP ROUTE REFRESH Message

Marker (16 Octets)

Length = 19 | Type = 4 Refresh
Route Selection Algorithm

- For a set of received advertisements of the same address prefix then the local “best” selection is based on:
 - Highest value for Local-Pref
 - Local setting
 - Shortest AS Path length
 - External preference
 - Lowest Multi Exit Discriminator value
 - Egress tie break for multi-connected ASes
 - Minimum IGP cost to Next_Hop address
 - iBGP tie break
 - eBGP learned routes preferred to iBGP-learned routes
 - Lowest BGP Identifier value
 - Last point tie break
Communities

- Communities are an optional transitive path attribute of an Update message, with variable length
 - Well-Known Communities
 - AS-Defined communities
- A way of attaching additional information to a routing update
Well-Known Communities

- Registered in an IANA Registry
- Created by IETF Standards Action
 - NO_EXPORT
 - Do not export this route outside of this AS, or outside of this BGP Confederation
 - NO_ADVERTISE
 - Do not export this route to any BGP peer (iBGP or eBGP)
 - NO_EXPORT_SUBCONFED
 - Do not export this route to any eBGP peer
 - NOPEER
 - No do export this route to eBGP peers that are bilateral peers
Community Example:
NO_EXPORT
AS-Defined Communities

- Optional Transitive Attribute
 - AS value
 - AS-specific value
- Used to signal to a specific AS information relating to the prefix and its handling
 - Local pref treatment
 - Prepending treatment
- Use to signal to other ASs information about the local handling of the prefix within this AS
Extended Communities

- Negotiated capability
- Adds a Type field to the community
- 8 octet field
 - 2 octets for type
 - 1 bit for IANA registry
 - 1 bit for transitive
 - 6 octets for value
 - 2 octets for AS
 - 4 octets for value
 or
 - 4 octets for AS
 - 2 octets for value
Community Example: Policy Signalling in iBGP
Route Reflectors and Confederations

[Diagram showing the structure of route reflectors and a BGP confederation.]
IPv6 support in BGP is part of a generalized multi-protocol support in BGP

Capability negotiated at session start

New non-transitive optional attributes

MP_REACH_NLRI
- Carries reachable destinations and associated next hop information, plus AFI/Sub-AFI
- V6 -> AFI = 2, SAFI = 1 (unicast)

MP_UNREACH_NLRI
- Unreachable destinations, AFI/Sub-AFI

Like tunnelling, the MP-BGP approach places IPv6 BGP update information inside the MP attributes of the outer BGP update message
BGP Session Security

- The third party TCP reset problem
 - TTL Hack
 - TCP hack
 - MD5 Signature Option
 - IPSEC for BGP
BGP Update Loads

- BGP does not implicitly suppress information
 - Anything passed into BGP is passed to all BGP speakers
 - Local announcements and withdrawals into eBGP are propagated to all BGP speakers in the entire network
- BGP can be a “chatty” protocol
 - Particularly in response to a withdrawal at origin
- The instantaneous peak “update loads” in BGP can be a significant factor in terms of processor capability for BGP speakers and overall convergence times
Hourly peak per second BGP update loads – measured at AS2.0 in July 2007
Load Shedding - RFD

- Route Flap Damping
 - “Two flaps are you are out!”
 - For each prefix / eBGP peer pair have a “penalty” score
 - Each Update and Withdrawal adds to the penalty
 - The penalty score decays over time
 - If the penalty exceeds the suppression threshold then the route is damped
 - The route is damped until the penalty score decays to the re-advertisement threshold
 - Fallen into disfavour these days
 - Single withdrawal at origin can trigger multi-hour outages
Load Shedding – MRAI and WMRAI

- Applied to the ADJ-RI B-OUT queue
- Wait for the MRAI timer interval (30 seconds) before advertising successive updates for the same prefix to the same peer
- Coarser: only advertise updates to a peer at 30 second intervals
- WMRAI: Include Withdrawal in the same timer

- A very coarse granularity filter
- Some implementations have MRAI enabled by default, others do not
- The mixed deployment has been simulated to be worse than noone or everyone using MRAI!
Load Shedding – SSLD

- Relative simple hack to BGP
- Use the sender side to perform loop detection looking for the eBGP peer’s AS in the AS Path, suppress sending the update is found
Influencing Route Selection

- Local selection (outbound path selection) can be adjusted through setting the Local_Pref values applied to incoming routing objects.
- But what about inbound path selection?
 - How can a AS “bias” the route selection of other ASs?
 - BGP Communities
 - Advertise more specific prefixes along the preferred path
 - Use own-AS prepending to advertise longer AS paths on less preferred paths
 - Use poison-AS set prepending to selectively eliminate path visibility
Operational Practices

- Maximize business outcomes
 - Prefer customers over peers over upstream
 - Maximize choices and avoid upstream lock-in
- Follow the topology
 - Prefer to minimize delay and maximize bandwidth
 - Maximize network utilization efficiency
 - Leverage topology diversity
- Reduce complexity
- Reduce risk
Agenda

- Scope
- Background to Internet Routing
- BGP
- Current IETF Activities
- Views, Opinions and Comments
Current (and Recent) IETF Activities

- Working Groups that directly relate to BGP work in the IETF:
 - Inter-Domain Routing (IDR)
 - Routing Protocol Security Requirements (RPSEC)
 - Secure Inter-Domain Routing (SIDR)
 - Global Routing Operations (GROW)
4-Byte AS Numbers

- RFC4893
 - Extends the Autonomous System identifier from 16 bits to 32 bits
 - Due to run-out concerns of the 16 bit number space first identified in 1999
 - An excellent example of a clearly through out backward-compatible transition arrangement
 - IDR activity undertaken from 2000 - 2007
Current IDR topics

- **Outbound Route Filter**
 - Extension BGP signalling that requests the peer to apply a specified filter set to the updates prior to passing them to this BGP speaker

- **AS Path Limit**
 - A new BGP Path Attribute that functions as a form of TTL for BGP Route Updates
RPSEC Topics

BGP Security Requirements

- What are the security requirements for BGP?
- This work is largely complete – the major outstanding topic at present is the extent to which the AS Path attribute of BGP updates could or should be secured
Currently Working on basic tools for passing security credentials
 - Digital signatures with associated X.509 certification and a PKI for signature validation
Then will work on approaches to fitting this into BGP in a modular fashion
 - Based on the RPSEC requirements this is a study of what and how various components of the BGP information could be digitally signed and validated
GROW

- Operational perspectives on BGP deployment
 - Recent activity:
 - MED Considerations
 - CIDR revisited
 - BGP Wedgies
- Currently setting a new work agenda
Agenda

- Scope
- Background to Internet Routing
- BGP
- Current IETF Activities
- Views, Opinions and Comments
Some open questions

- How big does the routing world get?
- How important are routing behaviours to mobility, ad hoc networking, sensor nets, …?
- While IP addresses continue to use overloaded semantics of forwarding and identity then there is continual pressure for persistent identity properties of addresses
 - Which places pressure on the routing system
Scaling – How big can it get?

Size of the DFZ IPv4 Routing Table: 1994 - 2007
Scaling – Micro and Macro

Scaling – More Specifics

Research Perspectives

- How well does BGP scale?
 - Various views ranging from perspectives of short term scaling issues through to no need for immediate concern
 - Is it the number of route objects or their dynamic behaviour that’s the pressing problem here?

- Recent interest in
 - examining BGP to improve some aspects of its dynamic behaviour
 - looking at alternative approaches to addressing and routing, generally based on forms of tunnelling and landmark routing to reduce the route object population
Looking Forward

- A number of studies over the years to enumerate the requirements and desired properties of an evolved routing system in the Routing Research Group.
- It is unclear whether there is an immediate need to move the entire Internet to a different inter-domain routing protocol.
- The decoupled routing architecture of the network does not prevent different routing protocols and different approaches to routing being deployed in distinct routing realms within the Internet.
Questions and Comments?