
DKIM Interoperability
Event Report

Murray S. Kucherawy <msk@sendmail.com>

Tony Hansen <tony@att.com>

Michael Thomas <mat@cisco.com>

12/4/2007

October 24-25
Hosted by Alt-N in Dallas, TX, USA
• (thanks Arvel Hathcock, and everyone else there!)

“Chaired” by Dave Crocker
20 companies and organizations
• as far away as France and Japan
• Alt-N Technologies, AOL, AT&T Inc., Bizanga Ltd.,

Brandenburg InternetWorking, Brandmail Solutions,
ColdSpark, Constant Contact, Inc., DKIMproxy,
Domain Assurance Council, Google Inc., ICONIX Inc.,
Internet Initiative Japan (IIJ), Ironport Systems,
Message Systems, Port25 Solutions, Postfix,
Sendmail, Inc., StrongMail Systems, and Yahoo! Inc.

Results

end to end testing
• Plus several “torture tests”
• Some people also tested Vouch By Reference

(VBR)

Matrix of senders vs. recipients filled by
end of second day
Only minor issues remained unresolved
• Some due to differences between what is in

the text and what is in the ABNF

Results

Signature Interoperability
Issues

Empty message bodies

• the “simple” body canonicalization says precisely
what to do in the case of an empty message body

• “relaxed” does not
• Consensus is that the “relaxed” body

canonicalization of the null body is the null input
• Majority felt it was conspicuous that “simple” was

explicit while “relaxed” was not
• Errata: add clarification statement on expected

values for relaxed (see next slide)

Empty Body Hash Values
Body c= Sha Base64 Hash Value

simple
(CRLF)

sha1 uoq1oCgLlTqpdDX/iUbLy7J1Wic=

relaxed
(“”)

sha1 2jmj7l5rSw0yVb/vlWAYkK/YBwk=

simple
(CRLF)

sha256 frcCV1k9oG9oKj3dpUqdJg1PxRT
2RSN/XKdLCPjaYaY=

relaxed
(“”)

sha256 47DEQpj8HBSa+/TImW+5JCeuQe
Rkm5NMpJWZG3hSuFU=

No Trailing CR-LF

What if body is non-empty, but does not end in
CRLF?

• Only possible with BDAT or non-SMTP transport
mechanisms

“simple” (§3.4.3) says to add a CRLF
“relaxed” (§3.4.4) says nothing
Consensus is to add a CRLF for Relaxed if

1. it was missing and
2. the body is not empty

– Errata: Add statement on what to do for Relaxed

Use of signature when querying
“reputation”

There is insufficient guidance about whether
the domain in “i=” or the domain in “d=” should
be used when generating a domain reputation
query based on a DKIM signature verification
Participants were asked to think about this and
try to generate language for inclusion in later
specifications to provide such guidance
Is this in scope for the working group?
• If not, where?

Is “a=” required or optional?

§3.3 says that rsa-sha256 is the default
if no algorithm is specified
§3.5 says “a=” is REQUIRED
Oops, pick one

FWS in z= tag
§3.5 ABNF for “z=”

sig-z-tag = %x7A [FWS] "=" [FWS] sig-z-tag-copy
*([FWS] "|" sig-z-tag-copy)

sig-z-tag-copy = hdr-name ":" qp-hdr-value
Does not allow any FWS between the "|" and the
following header name in sig-z-tag-copy
By the ABNF, the informative example that
immediately follows is invalid:
z=From:foo@eng.example.net|To:joe@example.com|
--------Subject:demo=20run|Date:July=205,…

FWS in z= tag
The [FWS] is redundant there; sig-z-tag-copy ends with qp-hdr-
value, which can already end with arbitrary FWS

Perhaps the spec meant to say:
sig-z-tag = %x7A [FWS] "=" [FWS] sig-z-tag-copy

*("|" [FWS] sig-z-tag-copy)
which isn't redundant and agrees with the example?

No FWS allowed between the hdr_name and the following ":“:
sig-z-tag-copy = hdr-name [FWS] ":" qp-hdr-value

Errata: either fix ABNF or fix the informative example
• Too late to fix ABNF?

When does x= take effect?
§3.5 says the “x=” value is an “absolute date”
A receiver’s notion of absolute time might not match the sender’s
notion of absolute time
• The document may not expire exactly when sender thinks it should

A receiving implementation has these choices:
• Try to decide how far apart sender’s notion of absolute time is from the

receiver’s notion of absolute time, based on header information (ugh)
• Use local knowledge of what the absolute time is
• Add in a “fudge factor” to acknowledge possible clock drift

Errata: add statement saying something like: “Due to clock drift, the
receiver’s notion of when to consider the signature expired may not
match exactly when the sender is expecting. Receiver’s MAY add a
‘fudge factor’ to allow for such possible drift.”

Invalid q=, etc. values

q=foo/bar:dns/txt:exam/ple
Nothing in text about unknown values
But ABNF says unknown values are for
“future extension”
Consensus: ignore unknown values
Errata: Add statement saying unknown
values must be ignored in signature “q=”
and key “h=”, “k=”, “s=”, “t=”

DNS Key Interoperability Issues

“s=” in key records
• §3.6.1 doesn't say what to do if one of the colon-

separated words is a word not enumerated in the
“currently defined service types”

s=foo:email:bar

• No explicit guidance about what to do with clearly
bogus values, e.g.

s=*:email

• Consensus is to ignore any colon-separated value not
recognized and only pay attention to “*” and “email” for
DKIM e-mail implementations

• Errata: add such a statement

Multiple TXT records
• §3.6.2.2. states the handling of multiple TXT

records is “undefined”, but it still came up in
conversation several times

• Also noteworthy is that SSP has not yet
added any discussion on this topic

• Are you allowed to have two TXT records with
the same selector name for different sha
values?

• Not a major issue at this time?
• Or should we add a definite MUST NOT?

“t=y” Semantics

Different usage by implementations
Some people ignore it entirely
Others change “hard fail” to “neutral”

Do nothing?

g=foo*bar

Is “g=” value allowed to have a “*” in the
middle?
§3.6.1 talks about x* and *x
ABNF indicates anywhere and multiple
Consensus: yes

Errata: Give additional examples like
“foo*bar”, “ex*am*ple” and “*exam*ple”.

Interoperability Issues in Signature
& DNS Record Interaction

“h=” (key) vs. “a=” (signature)

One participant felt the requirement to
correlate these two values was not
sufficiently normative

??

Other Interoperability Issues

Are “forgiving” Parsers Allowed?
dkim-signature: x=123; ;

↑
empty tag=value invalid per ABNF

Pro forgiving:
• Where’s the harm?

Anti forgiving:
• It drags us all down to the “lowest common denominator”
• Makes “Conformance Testing” harder

Does it lead to security problems if some parsers are liberal
and others are not?
No consensus
Straw for errata: A receiver SHOULD use strict ABNF checks.

Other Results

Validation Test Plan?
Validation tests are broken down into the
following categories:
• Canonicalization
• Signature
• Public Key
• Tags

• Generic
• Signatures
• Public Key Record

• Signing/Verifying Algorithm
• System

Tim Draegen <tdraegen@ironport.com>

Q&A

