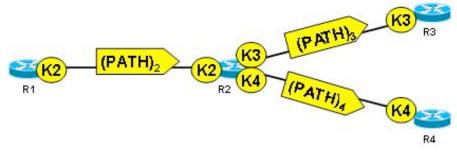
A Group Security Model for RSVP Message Authentication

Brian Weis

Outline

- Resource ReSerVation Protocol (RSVP) Overview
 - Architecture
 - Integrity Protection
 - Manual Keying Issues
- RSVP Group Trust Model
 - draft-behringer-tsvwg-rsvp-security-groupkeying-01
- GDOI Extensions to support Group Secured RSVP
 - draft-weis-gdoi-for-rsvp-00

RSVP Overview

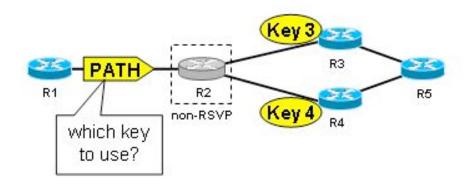

- RSVP provides setup of resource reservations for multicast or unicast data flows
- Receivers of the data flow request a specific QoS, which is relayed hop by hop toward the data flow source.
 - Each receiving hop intercepts & possibly alters the RSVP packet before forwarding it.
 - RSVP Source and Destination may be in different security domains, where the domains co-operate.

RSVP Authentication Overview

- RFC 2474 (updated by RFC 3097) specifies an INTEGRITY Object for RSVP, which included the following protection
 - Message integrity
 - HMAC-MD5 or HMAC-SHA result, created and verified with a shared key
 - Replay protection
 - Sequence Number (Counter or Time based)
- RSVP integrity keys are commonly configured manually (although other methods are allowed)

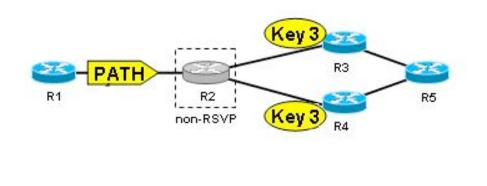
Pair-wise Manual Keying

- A pair-wise key can be used when an RSVP router knows which RSVP peer will be the RSVP next-hop.
 E.g., when
 - Keys are bound to a specific interface
 - The next hop router is known to be the RSVP next-hop router
 - Particularly appropriate when used between trust domains, where paths between trust domains is unambiguous.



12/5/07

IETF 70


Pair-wise Manual Keying Issues

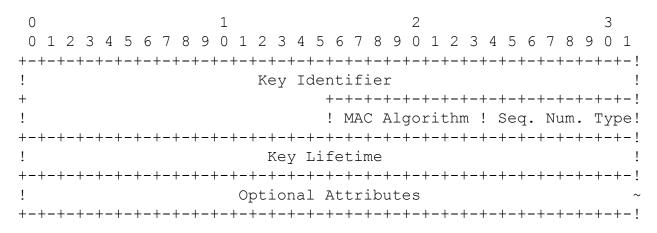
- Manual keying within a single trust domain (e.g., provider) is not optimal
 - The presence of multiple paths through the network makes pair-wise keys problematic

Group Manual Keying Issues

- Within a single trust domain a single group key can be manually shared
 - But manually shared group keys are difficult to manage, suffer from overuse, etc.

Intra-domain trust model

- Within a single trust domain, RSVP routers are jointly managing QoS policy, and share an implicit trust
 - RSVP speakers trust other RSVP speakers to correctly perform RSVP semantics
 - An RSVP router does not know which other RSVP speakers touch a packet, except those with which it peers
- An RSPV router explicitly trusts its peers, insomuch that it exchanges INTEGRITY objects.
 - As previously shown, in some configurations a group key between a set of RSVP routers is used, although predicting which RSVP routers comprise a group may be problematic


Dynamic Group Key Management

- Dynamic group key management of the RSVP integrity keys can ease both the configuration and quality the group keys.
- Dynamic group key management can provide group management services (e.g., de-authorize an RSVP router by removing it from the group).

GDOI Extensions for RSVP

- draft-weis-gdoi-for-rsvp-00 describes updates that allow GDOI to distribute RSVP integrity keys
 - SA TEK specific to RSVP
 - Define how the keys are passed in the KD payload

SA TEK

- Key identifier uniquely identifies a key
- MAC Algorithm (HMAC-SHA or HMAC-MD5)
- Sequence number type (counter or time)
- Key lifetime
- Optional Attributes
 - KeyStartValid (Timestamp for when to begin using the key)

Existing GDOI features used

- GDOI registration provides authentication & authorization of group members
- GDOI rekey protocol provides dynamic key updates
- LKH group management algorithm for revoking group members

Next steps

- We will work towards having draft-behringer-tsvwgrsvp-security-groupkeying-01 is accepted by the TSVWG WG as a working group draft
- If this happens, we'd like draft-weis-gdoi-for-rsvp-00 to be considered as a MSEC WG work item
 - Implementations of the TSVWG WG draft needs the GDOI extensions described in the MSEC WG draft
- In the meantime, we'd like feedback on whether there is support for doing such work in the MSEC WG.