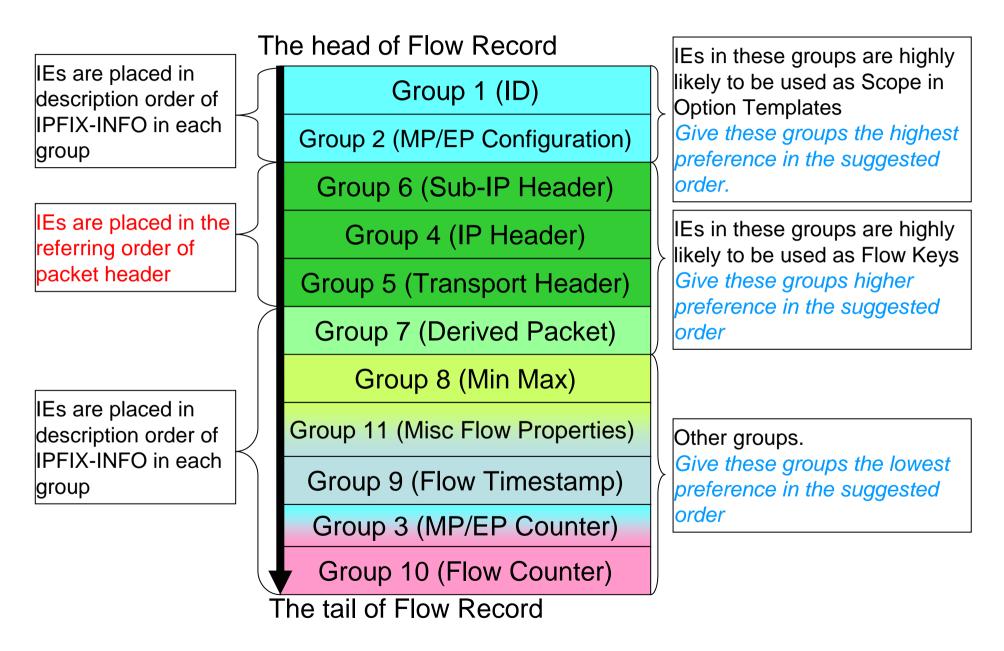
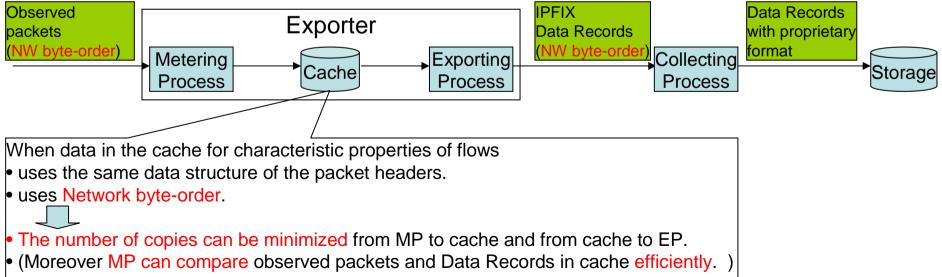
Guideline for the order of Information Elements draft-irino-ipfix-ie-order-04.txt

NTT Networks Service Lab. Hitoshi Irino


About this draft

- Motivation
 - Templates can define data structures of Data Records freely.
 - This feature allows various Templates even if they contain the same set of Information Elements (IEs).

sourceIPv4Address		These Data Records are different, even if they	destinationIPv4Address	
destinationIPv4Address			sourceIPv4Address	
sourcePort	destPort	contains the same set of IEs.	destPort	sourcePort
flowStartSysUpime			flowEndS	SysUpime
flowEndSysUpime			flowStart	SysUpime
octetDeltaCount			octetDe	ltaCount


- It is not efficient to allow various templates containing the same IEs.
 - e.g., Template management
- This draft provides a fundamental rule about the order of IEs
 - to prevent multiple Templates and Data Records being made from the same set of IEs.
 - without losing the flexibility of the Template mechanism.

The proposed order of Information Elements in the draft

Update in the newest draft

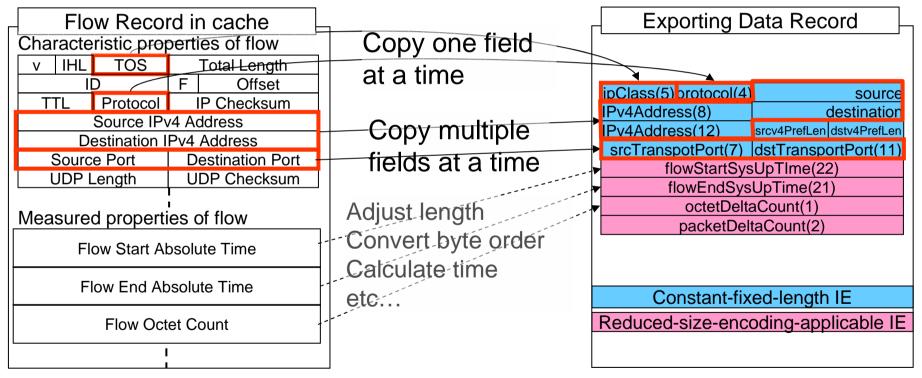
- The newest draft adds description about effective usage and ideas for increasing performance.
- In the environment where IPFIX devices use the same order of IEs:
 - 1. Copy method for multiple adjacent IEs is enabled
 - Conditions for the copy method:
 - Data lengths of IEs are the same in copy source and destination.
 - » Most IEs, whose values are derived from observed packet header fields, have a fixed length.
 - Byte-order of values of IEs are the same in copy source and destination.
 - Exporters can satisfy this condition for values derived from observed packet header fields.

Update in the newest draft (cont.)

- 2. Merging Data Records based on multiple Templates to a data structure.
 - When a collector stores collected Data Records based on multiple Templates into their proprietary format.
 - When an Aggregation Process of Mediators aggregates collected Data Records based on multiple Templates to Data Records based on a Template for exporting.

Summary and next step

- The proposed order can be effective for increasing the performance.
 - It was designed by referring to the order of the fields in the packet header.
- The newest draft adds descriptions about effective usage and ideas for increasing performance.
 - 1. Introduction
 - 1.1. Problem statement
 - 1.2. Purposes of this draft
 - 2. Terminology
 - 3. Approach to the ordering of Information Elements
 - 3.1. Order of Information Element groups
 - 3.2. Padding
 - 3.3. Enterprise-specific Information Elements
 - 4. Recommended order of Information Elements
 - 5. Applications of order of Information Elements
 - 5.1. Copy method for multiple adjacent Information Elements
 - 5.2. Merging with two or more Templates
 - 6. Security considerations
 - 7. IANA considerations
 - 8. References
- Next Step:
 - The order have to be more detailed.
 - I'm looking for any person who implements these idea.
 - I hope it is discussed in WG when charter will be changed in future...


Supplementary materials

Efficiency of the proposed order

- The reason for proposing an unified order
 - It is efficient for data copies between 2 processes.
 - The situation that 2 processes use same order is about 60% faster than another situation that 2 processes use different order.
 (a similar evaluation is introduced in IETF69: http://www.ietf.org/proceedings/07jul/slides/ipfix-10.pdf)
- The reason for proposed order referring order of fields in observed packet header
 - It is not only above copy issue but also efficient for observed packets and stored flows in MP.
 - This draft is proposed on the assumption that MP stores packets headers in cache.
 - When Exporters supports all IEs of RFC5102, MP have to be able to store the all fields in packet headers at least.
 - On the assumption, performance is increased about 40% in maximum. (This issue is introduced in Flocon2008: http://www.cert.org/flocon/2008/presentations/flocon2008-irino-katayama.pdf)

Example of copy method for multiple fields

- Conditions for copying multiple fields
 - Flow Record in cache and Exporting Data Record must use the same order.
 - IEs must have a constant fixed length.
 - Almost all IE characterizing properties of flow are constant fixed length.
 - Byte-orders must be the same.
 - Observed packet and Exporting Data Records use network byte order.
 - IEs for copying multiple fields must be adjacent.

Performance of copying IEs between an EP and a CP

	1. Suggested	Order	2. Another c	order (Evalu	ation with suggested order of -04 draft.)
	ingressInterface(10)	egressInterface(14)	ingressInterface(10) egressInterface(14)	Constant Fixed Length IE
	ipClass(5)protocol(4)	source	protocol(4)ipClass(5) destination	
	IPv4Address(8)	destination	IPv4Address(12)	source	Incoding applicable IE
	Pv4Address(12)	srcv4PrefLen dstv4PrefLen	IPv4Address(12)	dstv4PrefLen srcv4PrefLen	
	<pre>srcTransportPort(7)</pre>	dstTransportPort(11)	dstTransportPort(1	1) srcTransportPort(7)	
ipNextHopIPv4Address(15)		4Address(15)	ipNextHopIPv4Address(15)		
	bgpSrcAsNum(16)	bgpDstAsNum(17)	bgpDstAsNum(17) bgpSrcAsNum(16)	
	tcpCtrl(6) pado	lingOctets(210)	tcpCtrl(6) pa	ddingOctets(210)	
flowStartSysUpTIme(22)		flowStartSysUpTIme(22)			
flowEndSysUpTime(21)		flowEndSysUpTime(21)			
octetDeltaCount(1)		octetDeltaCount(1)			
packetDeltaCount(2)		packetDeltaCount(2)			
 An exporter sends data records using 2 templates 					
ingressInterface(10)		1.Template using suggested order			
egressInterface(14)					
	ipClass(5)protocol(4)	source	2.Template using <u>Another order</u>		
IPv4Address(8) destination		 The collector program repeats as follows: 			
	P_{V} $\Delta ddress$ (12)	srcv4Prefl en dstv4Prefl en			

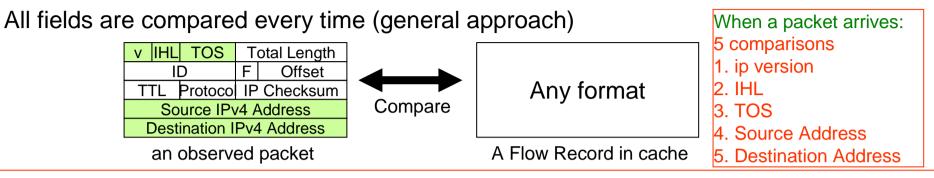
1.Reading data records

11

- 2.convert format into internal unified format and buffering
- 3.Writing to file from buffering memory
- •The data records is created from about 7million packets

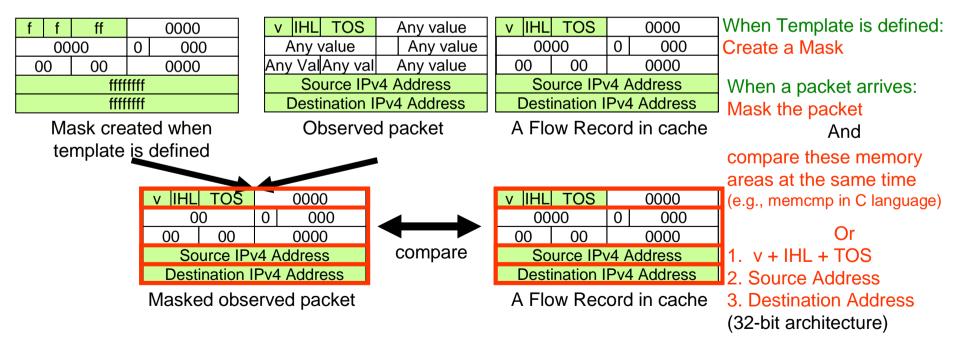
•Processing suggested order is about 64 % faster than Processing Another order

•Using same order between 2 processes is important to increase performance.

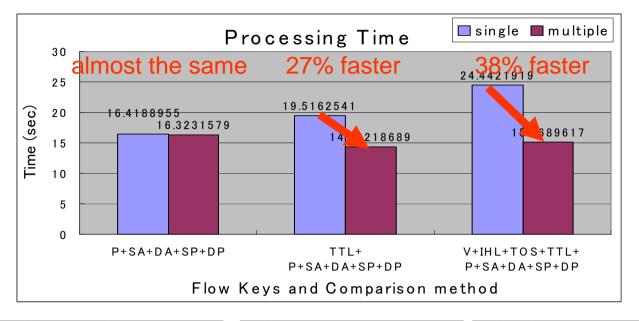

	Suggested	Another
Ave.	0.4533(sec)	0.7452 (sec)
ratio	1	1.64

ingressInterface(10)			
egressInterface(14)			
ipClass(5)protocol(4)		SOL	
IPv4Address(8)		destina	
IPv4Address(12)	srcv4PrefLen	dstv4Pre	
srcTransportPort(7) dstTransportPor			
ipNextHopIPv4Address(15)			
bgpSourceAsNumber(16)			
bgpDestinationAsNumber(17)			
flowStartSysUpTIme(22)			
flowEndSysUpTime(21)			
octetDeltaCount(1)			
packetDeltaCount(2)			
Collector's internal unified			

Collector's internal unified format uses suggested order


Comparison method for multiple fields in MP

Example: Flow Key: Version, IHL, TOS, source Address, destination Address



Multiple field comparison (our approach)

Premise: Fields of Flow Records are placed in the referring order as packet header fields

Evaluation of comparison method for multiple fields

v IHL TOS Total Length	v IHL TOS Total Length	v IHL TOS Total Length	
ID F Offset	ID F Offset	ID F Offset	
TTL Protoco IP Checksum	TTL Protoco IP Checksum	TTL Protoco IP Checksum	
Source IPv4 Address	Source IPv4 Address	Source IPv4 Address	
Destination IPv4 Address	Destination IPv4 Address	Destination IPv4 Address	
Source Port Dst Port	Source Port Dst Port	Source Port Dst Port	
P+SA+DA+SP+DP	TTL+	V+IHL+TOS+TTL+	
	P+SA+DA+SP+DP	P+SA+DA+SP+DP	