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Motivation

•Service level agreements (SLAs) specify performance 
guarantees made by Internet service providers

•Example metrics: packet loss, delay, delay variation

•Accurate and robust SLA compliance monitoring is 
important for service providers and their customers

•Lightweight, effective monitoring is a key challenge

• Measurement on a single path

• Network-wide monitoring

•Non-compliance can have serious consequences!
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Overview

•New sampling method for packet loss

•New methods for calculating existing statistics

•Mean delay, delay percentiles

•Packet loss average

•New delay variation statistic

•New optimized discrete-time sampling approach

•Evaluation in a controlled laboratory setting

•Tool (SLAm) accuracy compared with appropriate RFCs
• Sommers, Barford, Duffield, and Ron.  “Accurate and Efficient SLA Compliance Monitoring.”  

Proceedings of ACM SIGCOMM, August 2007.
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Packet loss

•Geometric sampling

•Builds on Badabing probe methodology [SBDR 05]

•Each sample consists of two probes, sent in consecutive 
time slots

• Each probe defined as three packets sent back-to-back

•New methodology for loss average statistic

•Use loss episode frequency and mean duration statistics 
from Badabing

•Packet loss average is derived from Badabing statistics

•Code available at http://wail.cs.wisc.edu/
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One-way delay

•Samples are geometrically distributed

•New methods for calculating statistics

•Mean delay estimate

• Based on Simpson’s method for numerical integration

•Delay percentile estimation

• Statistically sound; does not assume any underlying distribution 
of delay

• Result of method is a confidence bound on the desired percentile

•Inference of delay distribution for an unmeasured (but 
linearly dependent) path
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Delay variation

•Samples are the same as in RFC 3393

•Periodic samples used in our experiments, but they’re not 
required

•New statistic for estimating DV

•Closest in spirit to Type-P-One-way-ipdv-jitter statistic in 
RFC 3393

• Similar to RTP jitter metric (RFC 3550)

•Qualitative measure of delay variation along a path

• Calculated over an ordered set of samples

• A measure of distortion from zero variation
6
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•Sampling approach based on discrete-time clock

•E.g., for geometric and periodic sampling

•Probes may be scheduled to be sent at same time slot

•Tag probes according to the sampling methode to which 
they apply

Multi-objective probing
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Results

•Evaluated in controlled laboratory environment

•Two topologies: dumbbell and star

•A range of background traffic settings and loads

•Compare with RFC-standard probe streams at same 
bitrate

•Results for new methods are closer to true values

• Mean delay results show modest improvement in accuracy

• Loss average results significantly closer to true values

• Delay variation statistic is more robust than comparable statistic; 
more accurately tracks turbulent conditions
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Recent Related Work

• B.Y. Choi, S. Moon, R. Cruz, Z.-L. Zhang, C. Diot.  Practical delay monitoring for 
ISPs.  ACM CoNext, 2005.

• Estimating delay percentiles

• F. Baccelli, S. Machiraju, D. Veitch, J. Bolot.  The Role of PASTA in Network 
Measurement.  ACM SIGCOMM, 2006.

• F. Baccelli, S. Machiraju, D. Veitch, J. Bolot.  On Optimal Probing for Delay and Loss 
Measurement.  ACM IMC, 2007.

• Identifying unbiased sampling methods with minimal variance

• Y. Chen, D. Bindel, H. Song, R. Katz.  An Algebraic Approach to Practical and 
Scalable Overlay Network Monitoring.  ACM SIGCOMM, 2004.

• D.B. Chua, E.D. Kolaczyk, M. Crovella.  Efficient Estimation of End-to-end Network 
Properties.  IEEE INFOCOM, 2005.

• Tomographic inference of performance metrics
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Summary

•A set of new methodologies for accurate, lightweight 
SLA compliance monitoring

•Multi-objective probing: reduces overhead

•Delay: accurate estimates of mean and percentiles

•Loss rate: accurate estimate based on Badabing

•Delay variation: robust qualitative statistic

•Methodologies implemented in a tool called SLAm

•Laboratory tests with one- and two-hop topologies

•Paper available at http://cs.colgate.edu/faculty/
jsommers/pubs/fp122-sommers.pdf
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The End

Questions?

Is the IPPM WG interested in revising/updating 
existing active probe recommendations?

Evaluate comparative merits of recently 
proposed measurement techniques?
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Results: Delay

•Results for SLAm are closer to true value than 
standard Poisson-based stream (RFC 2679)

•Fast convergence to true mean delay (in paper)
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mean delay 
comparison

SLAm RFC 2679
true estimate true estimate

dumbbell (60%) 0.006 0.006 0.007 0.009
dumbbell (75%) 0.014 0.014 0.006 0.013

star: route 1 0.007 0.006 0.007 0.005
star: route 2 0.009 0.008 0.009 0.006
star: route 3 0.005 0.005 0.005 0.004
star: route 4 0.007 0.006 0.007 0.004

Results for 
self-similar 

background 
traffic generated 
using Harpoon.
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Results: Delay Quantiles

•Calculated quantiles with 90% confidence interval

•Intervals generally include true quantile, with few 
exceptions

•For all traffic scenarios used, in both dumbbell and star 
topologies
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Results for CBR in star 
topology (left) and long-
lived TCP in dumbbell 

topology (right)
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Results: Delay Distribution Inference

•Inferred distributions are 
close to the true ones

• Discretization of 100 
microseconds for convolution

•Results shown for UDP CBR 
traffic scenario (top) and 
self-similar traffic scenario 
(bottom)
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•Loss rate estimates are much more accurate than 
standard Poisson-based stream

•Fast convergence to true loss rate (in paper)
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Results: Loss Rate

loss rate 
comparison

dumbbell (60%)
dumbbell (75%)

star: route 1
star: route 2
star route 3
star: route 4

SLAm RFC 2680
true estimate true estimate

0.0008 0.0007 0.0017 0
0.0049 0.0050 0.0055 0
0.0170 0.0205 0.0289 0.0058
0.0008 0.0006 0.0069 0.0000
0.0192 0.0178 0.0219 0.0036
0.0005 0.0006 0.0002 0.0000
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Results for 
self-similar 

background 
traffic generated 
using Harpoon
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Results: Delay Variation

•SLAm DV matrix metric is more robust than RTP

•More accurately tracks congested and turbulent 
conditions

•Also robust in two-hop setting (in paper)
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