Moving Forward with Existing Proposals

Anna Charny

reflecting work of other authors of draft-charny-pcn-performance comparison and many other people

History

- Summary of well-defined proposals as of IETF70
 - CL, 3SM, SM
- Functional comparison
- Summary of simulation efforts
- Pseudocode of the core marking behaviors encompassing all possible options
- Tabled to IETF71

New Developments

- Edge-based Marked Flow Termination
 - Approximates 3SM behavior by moving 3SM's slow-down logic from core to edge
- LC-PCN draft clarification
- Reduction of encoding options due to uncovered tunneling issues
- AD feedback: scarcity of assigned DSCP codepoints define scope of viable solutions
 - Strong incentive to pursue 2 codepoint solution

This Presentation:

- Will try to reflect emerging consensus on how to move forward assuming a 2-codepoint solution (at least initially)
- Will clarify what may be lost by that (using key relevant points from draft-charny-pcncomparison)
- Will NOT explicitly compare various proposals
 - see draft-charny-pcn-comparison and individual proposal drafts for details on that

Attempt to Summarize Emerging Consensus

- Ask for one global DSCP at this point
 - Tentative: can reuse the admitted-EF of draft-baker?
 - Use this DSCP and standardize core behaviour and PCN info message format to work with a 2-codepoint solution
- That means: either admission only OR termination only Or some schemes that does both with 2 codepoints
 - SM is the only proposal on the table today that does both with 2 codepoints
- Implication: if allow both admission and termination, then proposed behaviours must work with SM
 - But keep the door open to other options to the extent possible
- Use experimental DSCP for 3 codepoint solutions
 - Experiment = Understand whether/when 3 code point solutions needed/wanted by operators
- Describe boundary node behaviour that allows SM (informational)
 - Make it as general as possible without breaking SM
 - Keep the door open for other boundary node behaviours

Options With 2 Codepoints

- The Options:
 - Allow just admission
 - Allow just termination
 - Allow both admission and termination (SM)
 - Allow any of the 3 options and make operator choose/configure?
- NOTE: if allow SM with two codepoints, CL can be done by adding threshold marking when/if extra codepoint becomes available (also need minor changes to boundary behaviors that could be pre-built with SM)

What is Lost in the Only Admission or Only Termination Case?

- Need to configure which one you are using in the domain
- Don't get the other one...
 - Is it acceptable to force either just admission or just the termination, but not both?
 - This presentation assumes must allow to have both
 - If must allow both, then solution must support SM
 - Unless and until another/better solution found and tested
- Anything else???

Assuming SM Must be Supported...

Core MUST do Excess Rate Metering and Marking

- A token bucket, which is sized in bits. It has a configured bit rate. Tokens MUST be added at the configured rate, to a maximum value TB.max
- Tokens MUST be removed equal to the size of the metered-packet, to a minimum TB.size=0
- If the token bucket is within an MTU of being empty, then the meter SHOULD indicate "excess-rate mark" to the Mark function. MTU means the maximum size of PCN-packets on the link.
- If the token bucket is empty (TB.size = 0), then the meter MUST indicate "excess-rate mark" to the Mark function.

Other Things Core Node Should Do (if it must support SM):

- When doing excess-rate marking) SHOULD:
 - If the metered-packet is already "excess-rate marked", then the Excess Rate Meter function SHOULD NOT be performed.
 - If the PCN-traffic level on the link is such that PCNpackets need to be dropped, then excess-rate marked packets SHOULD be preferentially dropped
 - If the PCN-traffic level on the link is such that the metered-packet is dropped, then the Excess Rate Meter function SHOULD NOT be performed on this packet

Other Things that Must be Defined

- PCN information exchange messages will contain (some of):
 - To be used to communicate PCN info from egress, to ingress and possibly PDP (wherever that is)
 - CLE
 - Sustainable Rate
 - Rate to terminate (optional: may be useful for PDP)
 - Ingress sending rate (optional: may be useful for PDP)
- Boundary Node Behaviors to be specified
 - Informational
 - Not in this presentation
 - Assumption: SM will be the initial one (assuming both admission and termination is needed)
 - Assumption: may define more that one boundary behavior

Limitations and Sacrifices (1)

- Core behavior definition:
 - The "SHOULD preferentially drop excess-marked packet condition" is problematic for 3SM and EMFT proposals in the presence of heavy loss
 - Limits the possibility of defining simpler edge behaviors
 - No edge behaviors that provably work with 2 codepoints are described as of today
 - Does not allow optimizations proposed in LC-PCN
 - Could be useful if termination decision made at the edge
 - Require additional implementation complexity at the core
 - Not fully understood at this time

Limitations and Sacrifices (2)

- Have only SM as two-function, 2-codepoint solution
- BUT SM has a number of known performance limitations compared to some of the 3-code point solutions:
 - when there are a small number of flows in ingress-egress aggregates
 - Not an infrequent case at all!
 - Some performance degradation in the presence of multiple simultaneously congested bottlenecks
 - Discussed in draft-charny-single-marking presentation later today
- SM is suboptimal for ECMP support
 - need 3 code-points to fix
- SM is suboptimal for support of probing
 - Need threshold-marking for admission to fix
- Does not allow simpler edge implementations possibly afforded by 3SM and EMFT solutions

What about Threshold Marking?

- Core MUST do Threshold Metering and Marking if:
 - want to experiment with 3 codepoints
 - want to allow just admission
- Threshold marking defined by Phil on Tuesday
 - Not changed and not discussed in this presentation in detail

What Needs to Happen to Move On?

- Reach consensus on which 2-codepoint solution to pursue
 - Assuming there is consensus that 2 codepoint is what we must do
- Agree on specific encoding
 - two choices (but not discussed in this presentation)
- Turn slides into appropriate core behavior draft
- Specify any signaling requirements
- Specify (informational) boundary behaviors

That is it

BACKUP

 The following slides summarize some of the draft-charny-pcn-comparison conclusions Marking and Encoding

	SM	3SM	CL	EMFR	LC-PCN
# encoding states	2	3	3	3	2 (3 with AfM)
# metering mechanisms in forwarding path	1	2	2	2	1
Type of marking for admission	excess	threshold	threshold	threshol d	Excess or rate msremnt with proportional marking
Type of marking for termination	not required	Excess with slowdown	excess	excess	Not required

- All existing proposals except 3SM and LC-PCN can be supported with threshold and/or excess rate marking
- 3SM and LC-PCN need additional core functionality
 - But EMFR can approximate 3SM without this additional core functionality. However, performance results are preliminary

Caveats: other differences

	SM	3SM	CL	EMFR	LC-PCN
Look at marking prior to metering?	yes (do not meter excess- marked packets)	yes (put token buckets in if packet excess- rate marked;	Yes (do not meter excess– marked packets;)	Yes (do not meter excess-marked packets	yes (do not meter excess- marked packets)
Re-Mark a previously marked packet	n/a	Do not remark excess to threshold	Do not remark excess to threshold	Do not remark excess rate to threshold	n/a
Drop preference in case of packet loss	Drop excess marked pkts first	Prefer not to drop excess-rate marks but OK if some dropped	Drop excess- rate marks first	Prefere not to drop excess rate marks but OK if some dropped	depends thres. set. Typically, prefer not to drop ex. rate

- Choice of algorithm defines "red" behaviors (CL, SM, LC-PCN vs 3SM or EMFR)
- Orange behaviors might be OK?
- Green the same for all

Other Differences: Decision Location

- Admission Decisions
 - At ingress for CL and SM as described
 - But OK to do at egress
 - At egress for 3SM, EMFT and LC-PCN
- Termination decisions
 - At ingress of CL and SM
 - Could do at egress with performance degradation
 - At egress for 3SM, EMFT and LC-PCN
 - Note: if ingress decides termination, can police/drop packets while signaling deals with teardown (could be substantial delay); egress cannot do it

Other differences: what is signaled

- CL and 3SM:
 - CLE and Sustainable Rate as described
 - The meaning of these are slightly different between CL and 3SM, but the format is the same
 - Note: if admission decision moved to egress, then just Sustainable Rate will need to be signaled
 - 3SM, EMFT and LC-PCN
 - Nothing for admission
 - Set of flows to terminate for termination

Performance Comparisons

- Extensive apples-to-apples CL to SM comparison
- Substantial 3SM simulation study
- Some amount of simulations of EMFT
 - Conjecture: close to 3SM?
- No simulations of LC-PCN as of today
- Across-the-board performance comparisons difficult due to lack of applesto-apples simulations

Other Comparisons

Probing

- Out of scope now but:
 - SM and LC-PCN need many probes to reliably decide admission
 - Router alert options has been suggested
 - » Performance impact a serious concern
 - CL and 3SM need just one probe

ECMP

- No direct support for admission other than by probing for any proposals
- For termination
 - Good support for 3SM and EMFT
 - CL can support at the expense of signalling set of flows to ingress
 - SM is not accurate even if signals set of flows to ingress