PCN with Single Marking draft-charny-pcn-singlemarking-03 Anna Charny & Joy Zhang acharny@cisco.com joyzhang@cisco.com

Single-Marking

Initial Motivation

- Saves one code-point
 - Essential if must be limited to 2 codepoints
 - Important for MPLS
- Requires only one metering/marking mechanism in the core instead of two
 - Important for data path performance
- Incremental deployment step towards CL
- Focus of this Presentation: What do we lose?

Single-Marking: What do we lose?

- Functionality:
 - Network-wide parameter configuration coordination: U
 - ECMP for termination
 - No, partial support with additional complexity at edge
 - ECMP for admission
 - Yes, with probes, but need many probes

Performance-wise

CL-PHB	Parameters	RTT	IE Aggregation	Multi Bottleneck
Admission	•••	•••	•••	•••
Termination	•••			••
Single-Marking	Parameters	RTT	IE Aggregation	Multi Bottleneck
Single-Marking Admission	Parameters	RTT	IE Aggregation	Multi Bottleneck

Single-Marking	Parameters	RTT	IE Aggregation	Multi Bottleneck
Admission	•••	•••	••	•••
Termination	•••	••	$(\circ \circ)$	•••

- Summary of all the \bigcirc
 - Configuration Parameters
 - Insensitive for both admission and termination
 - Insensitive to RTT difference (absolute or relative)
 - RTT Difference
 - No effect with absolute difference for both admission and termination
 - Visible over-termination with relative difference, not significant
 - SM performs comparable to CL
 - "comparable" means error difference within 2-3%

Single-Marking	Parameters	RTT	IE Aggregation	Multi Bottleneck
Admission		•••		•••
Termination	•••			•••

- Cause?
 - Uneven marking distribution among IE-Aggregate (Synchronization Effect)
- How Bad?
 - Significant only when IE-aggregation level is very low, < 10 flow/IE</p>
 - Effect disappears with enough randomization of CBR

Single-Marking	Parameters	RTT	IE Aggregation	Multi Bottleneck
Admission		•••	•••	•••
Termination	•••	•••		••

Cause?

- Again, uneven marking distribution among IE-Aggregates,
- False termination, when traffic is close below the (implicit) termination threshold

How Bad?

- degree of IE aggregation needed for < 10% over-termination is ~50 to ~150 Flow/IE</p>
- Smoothing can fix
 - Trade-off reaction time vs. accuracy

- Cause?
 - The multi-bottleneck "beat-down effect" is amplified, since Single-Marking is metering against admission-threshold
- How Bad?
 - Mostly within 20% error (vs. within 10% for CL-PHB)
- * Result for 1.2<U<2.0 (we consider it the case of practical importance)
- * Result are compared to a "rate-proportionally fair" reference algorithm

Single-Marking	Parameters	RTT	IE Aggregation	Multi Bottleneck
Admission	•••	•••		··· ←
Termination	•••	••		••

- Bottleneck Utilization
 - Works well in both SM and CL

Fairness

- Unfair to long-haul aggregates in both CL and SM
- Degree of unfairness (current results, more to come)
 - No significant difference between SM and CL
 - Very sensitive to statistical variation of the flow arrival
 - For it to be significant, needs large demand overload for long duration

Single-Marking Performance Summary Applicability Area

- At sufficient level ingress-egress aggregation performance of Single-Marking is comparable to CL-PHB
 - Admission: ~10 flow or more
 - Termination ~50-150 flow or more

What is lost?

- At low ingress-egress aggregation, Single-Marking is less accurate (over-admission & over-termination)
- In the presence of multiple bottleneck, Single-Marking termination performs worse than CL-PHB

What's "Marking Synchronization"

- Cause: for periodic traffic and certain parameter combinations marking is not well distributed among flows sharing the bottleneck
 - some flows are always marked and some are never marked
 - most relevant for CBR, but visible for near-CBR portions of other traffic types
- Relevant only to excess-rate token bucket marking/metering when ingress-egress aggregation is low
 - Detrimental to excess-rate admission: overadmission
 - Beneficial to termination: less over-termination than theoretical worst case

Evaluation Details IE-Aggregation Admission

With enough randomization, SM performs comparable to CL

□ Graph above for CBR, other traffic types show similar

Evaluation Details Fluid vs. Packet

The error between Fluid and Packet Simulation is relatively contained.

Evaluation Details Multi-bottleneck Admission

250 packet-level SM simulations, with exact same parameter setting and traffic load (PLT2, 5x overload)

CL shows similar trend

It shows statistical variations of flow arrival have a strong effect on the degree of unfairness