

Institute of Computer Science Department of Distributed Systems Prof. Dr.-Ing. P. Tran-Gia

PCN-Based Marked Flow Termination

http://www3.informatik.uni-wuerzburg.de/staff/menth/Publications/Menth08-PCN-MFT.pdf http://tools.ietf.org/wg/pcn/draft-menth-pcn-emft-00.txt

www3.informatik.uni-wuerzburg.de

Michael Menth and Frank Lehrieder

Overview

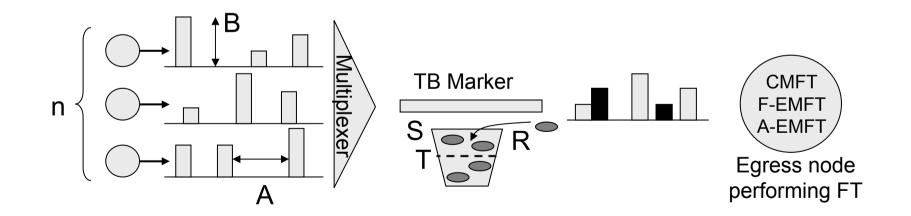
- Motivation
- Mechanisms
- Performance
- Summary

Marked Flow Termination (MFT)

- Terminates flows with marked packets
 - Gradual termination process
 - Copes well with ECMP
- Problem: too aggressive
- 2 solutions
 - Core-assisted MFT (CMFT, 3sm)
 - Marking frequency reduction in core nodes
 - Fewer packets get marked
 - Terminate any flow with marked packets
 - Edge-assisted MFT (EMFT)
 - Egress nodes terminate only some marked flows

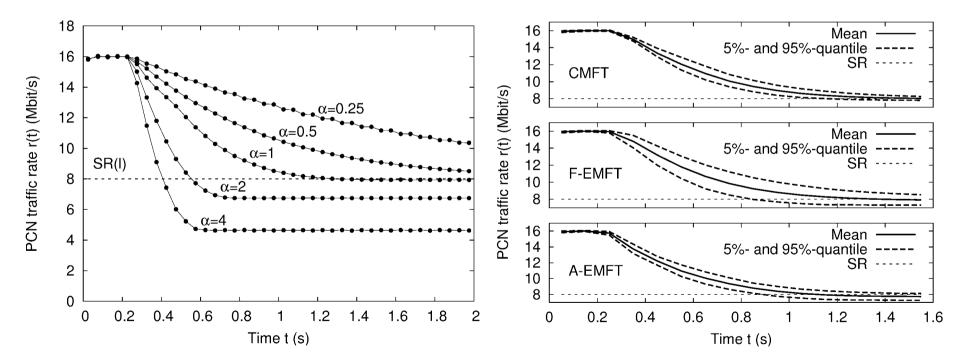
Edge-Assisted MFT (EMFT)

- Flow-based EMFT
 - Applicable for end-to-end PCN
 - Credit counter per flow
 - Random initialization
 - Marked bytes reduce credits
 - Credit counter ≤ 0
 - Terminate flow


- Aggregate-based EMFT
 - Applicable for PCN domain
 - Credit counter per IEA
 - Random initialization
 - Marked bytes reduce credits
 - Credit counter ≤ 0
 - Terminate one flow of the IEA
 - Increase credit counter proportionally to rate of terminated flow

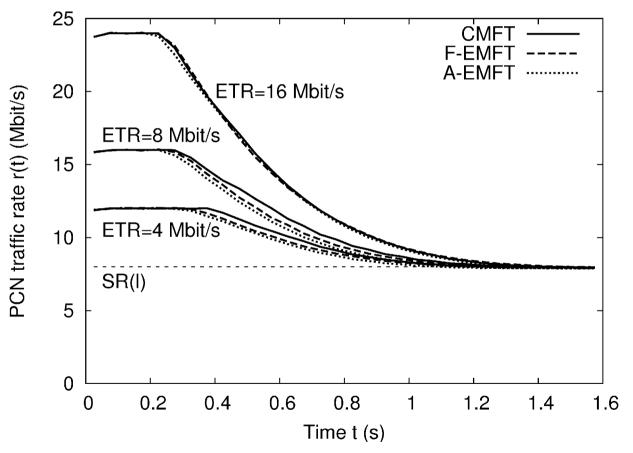
Experiment Setup

- n independent traffic sources
- Bottleneck link
 - Termination rate 100 flows
 - Overload 100%
 - No packet loss
- Flow termination delay: D_T =200ms



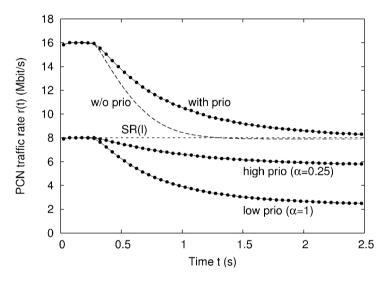
Termination Aggressiveness α

- CMFT: α controls marking frequency reduction in core
- EMFT: α controls initialization and increments of credit counters
- Termination speed increases with α
- Overtermination avoided for $\alpha \leq 1$



Impact of Overload

- Fast termination also for large overload
- Packet loss not simulated



Differences of MFT Variants

- All methods
 - Flow termination delay impacts termination speed
 - No unfairness
- CMFT
 - Termination speed depends on packet frequency of flows
 - No termination priorities possible
 - Allows anti-cheating for endto-end PCN

- Flow-based EMFT
 - Suitable for end-to-end PCN
 - Termination priorities possible (α=0.25, 1.0)

- Aggregate-based EMFT
 - Suitable for PCN domains
 - Termination policies possible

Summary

- Marked flow termination (MFT)
 - Core-assisted MFT
 - Edge-assisted MFT
 - Flow-based (end-to-end PCN)
 - Aggregate-based (PCN domain)
 - Simple edge behaviors
- Termination behavior well understood
 - Aggressiveness α
 - Self-correcting mechanism
 - Invariant to many system parameters
 - What's missing in the study: severe overload and packet loss

