Secure DHCPv6 Using CGAs

draft-jiang-dhc-secure-dhcpv6-00.txt DHC Working Group IETF 72, Dublin

Sheng JIANG & Sean SHEN

Content

DHCPv6 Security Issues

Secure DHCPv6 Overview

D New DHCPv6 Options

D Processing Rules and Behaviors

D Security Considerations

Discussed Topics

DHCPv6 Security Issues

- Current DHCPv6 uses regular IPv6 addresses
 - a malicious attacker can use a fake address to spoof or launch a
- A malicious server can provide incorrect configuration information to the client in order to
 - cause the client to communicate with a malicious server, like DN
 - cause all network communication from the client to fail
 - collect critical information through the interaction with clients

A malicious client can

- spoof DHCP servers to register incorrect information in services,
- be able to gain unauthorized access to some resources

Note: we do not analyze all DHCPv6 security issues here, the above are only can improve

DHCPv6 Security Issues (2)

- Current DHCPv6 has defined an authentication option wi symmetric key pair
 - its key management using either manual configuration or transmitting key in plaintext
 - either way, the security of key itself is in question mark
- Communication between a server and a relay agent, and communication between relay agents can be secured through the use of IPSec
 - IPSec is quite complicated
 - manual configuration and static keys of IPSec are potential issumakers
 - Communication between a relay agent and a client

Brief Introduce of CGA

- CGAs [RFC3972] is IPv6 address, which is bound with th public key of the host
- The binding between the public key and the address car verified at the receiver side
 - Address ownership can be verified
- Messages sent using CGAs can be protected by attachin the CGA parameters and by signing the message with th corresponding private key of the host
- The protection can work via either certificate or local configuration

Secure DHCPv6 Overview

- Introduce a CGA option with an address ownership proo mechanism
 - This CGA address must be used in IP transmission
- Introduce a signature option with a verification mechanis
 - The pub/priv key pair with CGA is used for verification/signature
- The above two option must be used together
- Support for algorithm agility is also provided
- CGA, the identity-bound IPv6 address, can be used in ma
 IP-based communication

New DHCPv6 Options

CGA Option

- containing the CGA Parameters data structure [RFC3972]

Signature Option

- **HA-id** the hash algorithm is used for computing the signature
- SA-id the signature algorithm is used for computing the signature result
- HA-id-KH the hash algorithm used for producing the Key Hash fi
- Timestamp the current time of day (NTP-format timestamp [RFC1 reduce the danger of replay attacks
- Key Hash a 128-bit hash result of the public key used for construction the signature to a part signature to a part key known
- Signature a digital signature constructed by using the sender's p
 key over CGA Message Type tag, src/des IP addr, DF
 message head and all DHCPv6 options

Processing Rules and Behaviors

At the sender side:

- send secure DHCPv6 messages using the CGA address
- both the CGA option and the Signature option MUST be preser all secure DHCPv6 messages
- At the receiver side:
 - DHCPv6 messages without either the CGA option or the Signa option MUST be treated as unsecured
 - verify the source address, as used in IP header, with the CGA
 - verify the Signature option
 - Only the messages that succeed both CGA and signature verifications are accepted as secured DHCPv6 messages

Security Considerations

- DHCPv6 nodes without CGAs or the DHCPv6 messages use unspecific addresses as source address cannot be protected
- Downgrade attacks cannot be avoided if nodes are configured to accept both secured and unsecured messa
 - A simple solution is that Secure DHCPv6 is mandated on servers, reply agents and clients if a certain link has been deployed Secure DHCPv6

Discussion on mail list (1)

Different from current Auth option

- Source IP address verification
- Based on simpler but more reliable key management
- CGA can protects communication between servers and relay a
- CGA can be used not particularly for DHCPv6, but also used fc other scenarios
- Why not use DHCP Auth framework (use CGA as sub-protoco current Auth option)
 - DHCPv6 AUTH allow only ONE auth option, only client and ser can authenticate each other, relay agents have to be authenticate via IPSEC
 - Our proposal tries to avoid this IPSEC requirement and makes that all the relay agents in the middle can be authenticated and trusted by the receiver

Discussion on mail list (2)

Should the Signature option be last or not

- Support to be last (initial design)
 - Simpler for generator and verifier
 - Last generated in the time order
 - Last in SEND and Enhanced Route Optimization MIPV6

Against to be last

- None of DHCPv6 option requires specific place
- Problems if another option also requires to be last in the future
- It is a design choice, both technically doable

Comments are welcomed!

Thank You!

Sheng JIANG (shengjiang@huawei.com) Sean SHEN (sshen@huawei.com)