
Apple IPv6 Experiences

Stuart Cheshire, Apple

72nd IETF, 30th July 2008, Dublin

This presentation is available with audio soundtrack at
http://www.stuartcheshire.org/IETF72/

1

Good evening ladies and gentleman. My name is Stuart Cheshire, and I’m here to talk to you 
about our experiences adopting IPv6 in Apple products.



2

This is Apple’s AirPort Express wireless base station.
You can plug a printer into the USB port and print to it over the network.
You can plug your HiFi speakers into the audio socket and stream music to it from iTunes.
You manage and administer it over the network.
We do this using IPv6 Link-Local Addressing, and the reason we use IPv6 Link-Local 
Addresses is because there’s no way the user can mess it up.
They can’t type in the wrong subnet mask.
IPv6 Link-Local Addressing always works.
And that’s great for use on a single network within your home, but I also want to talk about 
the broader question of using IPv6 on the Internet at large.



IPv6 Incentives
• Operating System

• Application Software (e.g. Web browser)

• Customer’s Home Gateway

• ISP

• Content Provider (e.g. Web sites)

3

Apple’s business is largely end-users at home using iMacs.
In Enterprise markets this picture might look a bit different, but in this context we have five 
players who need to cooperate to make IPv6 a success.
So, in reverse order:
* We need content, and I’ll use the web as the common example of what people use the 
Internet for. We need web sites that have content, that are reachable by IPv6
* but there’s no point having that web site if no ISP offers IPv6 to customers
* and there’s no point an ISP offering it if the customer’s home gateway doesn’t support IPv6,
* and there’s no point doing that if the web browser doesn’t do IPv6
* and you can’t do a web browser that supports IPv6 unless the operating system does
so everybody needs to collaborate here
Now, there’s no incentive for any of these players to move first, because any one of these 
players does all this work, and the user gets no benefit because the other people haven’t 
done their bit.
So, the problem we have is providing incentives.
Well, IPv6 is cool, and thankfully, in many cases, that’s enough
↳and that’s why Apple has IPv6 in the operating system
↳and that’s why most of our network applications already support IPv6 too
but now we need the other players to catch up
and we need incentives for them to move to IPv6



IPv6 Incentives
• Operating System

• Application Software (e.g. Web browser)

• Customer’s Home Gateway

• ISP

• Content Provider (e.g. Web sites)

3

Apple’s business is largely end-users at home using iMacs.
In Enterprise markets this picture might look a bit different, but in this context we have five 
players who need to cooperate to make IPv6 a success.
So, in reverse order:
* We need content, and I’ll use the web as the common example of what people use the 
Internet for. We need web sites that have content, that are reachable by IPv6
* but there’s no point having that web site if no ISP offers IPv6 to customers
* and there’s no point an ISP offering it if the customer’s home gateway doesn’t support IPv6,
* and there’s no point doing that if the web browser doesn’t do IPv6
* and you can’t do a web browser that supports IPv6 unless the operating system does
so everybody needs to collaborate here
Now, there’s no incentive for any of these players to move first, because any one of these 
players does all this work, and the user gets no benefit because the other people haven’t 
done their bit.
So, the problem we have is providing incentives.
Well, IPv6 is cool, and thankfully, in many cases, that’s enough
↳and that’s why Apple has IPv6 in the operating system
↳and that’s why most of our network applications already support IPv6 too
but now we need the other players to catch up
and we need incentives for them to move to IPv6



IPv6 Incentives
• Operating System

• Application Software (e.g. Web browser)

• Customer’s Home Gateway

• ISP

• Content Provider (e.g. Web sites)

3

Apple’s business is largely end-users at home using iMacs.
In Enterprise markets this picture might look a bit different, but in this context we have five 
players who need to cooperate to make IPv6 a success.
So, in reverse order:
* We need content, and I’ll use the web as the common example of what people use the 
Internet for. We need web sites that have content, that are reachable by IPv6
* but there’s no point having that web site if no ISP offers IPv6 to customers
* and there’s no point an ISP offering it if the customer’s home gateway doesn’t support IPv6,
* and there’s no point doing that if the web browser doesn’t do IPv6
* and you can’t do a web browser that supports IPv6 unless the operating system does
so everybody needs to collaborate here
Now, there’s no incentive for any of these players to move first, because any one of these 
players does all this work, and the user gets no benefit because the other people haven’t 
done their bit.
So, the problem we have is providing incentives.
Well, IPv6 is cool, and thankfully, in many cases, that’s enough
↳and that’s why Apple has IPv6 in the operating system
↳and that’s why most of our network applications already support IPv6 too
but now we need the other players to catch up
and we need incentives for them to move to IPv6



IPv6 Disincentives
• Operating System

• Application Software (e.g. Web browser)

• Customer’s Home Gateway

• ISP

• Content Provider (e.g. Web sites)

4

Or at least, we don’t want there to be disincentives

And this is the focus of my talk. We don’t want adopting IPv6 to result in a bad user 
experience, where networking is slow or broken.

Adopting IPv6 in the OS is easy. There’s really no downside. If no applications are using it, 
then just having it in the OS doesn’t really hurt anything, and this is why Mac OS X, Windows, 
and pretty much all other major operating systems now support IPv6.

The next step is what happens when applications start to use IPv6, ↳and that’s what I’m 
going to talk about today.



IPv6 Disincentives
• Operating System

• Application Software (e.g. Web browser)

• Customer’s Home Gateway

• ISP

• Content Provider (e.g. Web sites)

4

Or at least, we don’t want there to be disincentives

And this is the focus of my talk. We don’t want adopting IPv6 to result in a bad user 
experience, where networking is slow or broken.

Adopting IPv6 in the OS is easy. There’s really no downside. If no applications are using it, 
then just having it in the OS doesn’t really hurt anything, and this is why Mac OS X, Windows, 
and pretty much all other major operating systems now support IPv6.

The next step is what happens when applications start to use IPv6, ↳and that’s what I’m 
going to talk about today.



Connection Steps

5

This is an example of what might happen when you view a web page in your web browser.

First your machine looks up the IPv6 quad-A address record
Then it looks up the IPv4 address record
Then it tries to connect with IPv6… but that connection might fail
So then it connects with IPv4

And this picture is great — as long as that whole timeline completes nearly instantaneously, 
so that the user doesn’t notice.

The problem is that that IPv6 failure in the middle might not happen instantaneously. It might 
take a minute, or two, or three minutes to time out, depending on the TCP stack, and the 
user isn’t going to be willing to wait three minutes.



AAAA

Connection Steps

5

This is an example of what might happen when you view a web page in your web browser.

First your machine looks up the IPv6 quad-A address record
Then it looks up the IPv4 address record
Then it tries to connect with IPv6… but that connection might fail
So then it connects with IPv4

And this picture is great — as long as that whole timeline completes nearly instantaneously, 
so that the user doesn’t notice.

The problem is that that IPv6 failure in the middle might not happen instantaneously. It might 
take a minute, or two, or three minutes to time out, depending on the TCP stack, and the 
user isn’t going to be willing to wait three minutes.



AAAA A

Connection Steps

5

This is an example of what might happen when you view a web page in your web browser.

First your machine looks up the IPv6 quad-A address record
Then it looks up the IPv4 address record
Then it tries to connect with IPv6… but that connection might fail
So then it connects with IPv4

And this picture is great — as long as that whole timeline completes nearly instantaneously, 
so that the user doesn’t notice.

The problem is that that IPv6 failure in the middle might not happen instantaneously. It might 
take a minute, or two, or three minutes to time out, depending on the TCP stack, and the 
user isn’t going to be willing to wait three minutes.



AAAA A IPv6

Connection Steps

5

This is an example of what might happen when you view a web page in your web browser.

First your machine looks up the IPv6 quad-A address record
Then it looks up the IPv4 address record
Then it tries to connect with IPv6… but that connection might fail
So then it connects with IPv4

And this picture is great — as long as that whole timeline completes nearly instantaneously, 
so that the user doesn’t notice.

The problem is that that IPv6 failure in the middle might not happen instantaneously. It might 
take a minute, or two, or three minutes to time out, depending on the TCP stack, and the 
user isn’t going to be willing to wait three minutes.



AAAA A IPv6

Connection Steps

5

This is an example of what might happen when you view a web page in your web browser.

First your machine looks up the IPv6 quad-A address record
Then it looks up the IPv4 address record
Then it tries to connect with IPv6… but that connection might fail
So then it connects with IPv4

And this picture is great — as long as that whole timeline completes nearly instantaneously, 
so that the user doesn’t notice.

The problem is that that IPv6 failure in the middle might not happen instantaneously. It might 
take a minute, or two, or three minutes to time out, depending on the TCP stack, and the 
user isn’t going to be willing to wait three minutes.



AAAA A IPv4IPv6

Connection Steps

5

This is an example of what might happen when you view a web page in your web browser.

First your machine looks up the IPv6 quad-A address record
Then it looks up the IPv4 address record
Then it tries to connect with IPv6… but that connection might fail
So then it connects with IPv4

And this picture is great — as long as that whole timeline completes nearly instantaneously, 
so that the user doesn’t notice.

The problem is that that IPv6 failure in the middle might not happen instantaneously. It might 
take a minute, or two, or three minutes to time out, depending on the TCP stack, and the 
user isn’t going to be willing to wait three minutes.



AAAA A
IPv6

IPv4

Simultaneous Connections

6

We can solve that by doing the two connections in parallel, and that way, if the IPv6 
connection fails, that doesn’t block the IPv4 connection from completing in a timely fashion.

Doing those DNS queries sequentially is a bit of a waste of time, and we can solve that by 
doing those in parallel too.



AAAA A

IPv4

IPv6

Simultaneous Connections

6

We can solve that by doing the two connections in parallel, and that way, if the IPv6 
connection fails, that doesn’t block the IPv4 connection from completing in a timely fashion.

Doing those DNS queries sequentially is a bit of a waste of time, and we can solve that by 
doing those in parallel too.



AAAA A

IPv4

IPv6

IPv4

Simultaneous Connections

6

We can solve that by doing the two connections in parallel, and that way, if the IPv6 
connection fails, that doesn’t block the IPv4 connection from completing in a timely fashion.

Doing those DNS queries sequentially is a bit of a waste of time, and we can solve that by 
doing those in parallel too.



A

IPv6

IPv4

AAAA

7

So, this is good, but there’s still a problem.
There are many cases, we have found, with not just small web sites, but big-name web sites, 
where those quad-A queries fail. They don’t give an error. They don’t give a negative 
response. The queries are just ignored, so the client retransmits, and it fails with a timeout, 
and that takes a long time, and the problem there is that it’s blocking progress on the IPv4 
connection while we’re waiting for an IPv6 address that isn’t coming. People try to work out 
heuristics for how long to wait like, maybe, how long the address query takes as a predictor 
of how long the quad-A will take, but that’s not a good predictor because quite often the 
address record is cached in the local DNS cache but the quad-A isn’t. So, we don’t know how 
long to wait, and even waiting a couple of seconds is too long. The Safari engineers work late 
nights and weekends to shave every millisecond off the page load times, and if they’ve got a 
particular page loading in 0.7 seconds, for us to come along and say, “Oh, yeah, we want to 
add a five-second pause on that,” is completely unacceptable. It’s like telling Ferrari 
engineers that you want to make a little change to their car, and by-the-way, the top speed 
will now be 12 miles per hour. They’re not going to go for that.

That picture really describes how getaddrinfo() works, and fundamentally the problem is that 
it is blocked waiting for information that isn’t coming.



A

IPv6

IPv4

AAAA

7

So, this is good, but there’s still a problem.
There are many cases, we have found, with not just small web sites, but big-name web sites, 
where those quad-A queries fail. They don’t give an error. They don’t give a negative 
response. The queries are just ignored, so the client retransmits, and it fails with a timeout, 
and that takes a long time, and the problem there is that it’s blocking progress on the IPv4 
connection while we’re waiting for an IPv6 address that isn’t coming. People try to work out 
heuristics for how long to wait like, maybe, how long the address query takes as a predictor 
of how long the quad-A will take, but that’s not a good predictor because quite often the 
address record is cached in the local DNS cache but the quad-A isn’t. So, we don’t know how 
long to wait, and even waiting a couple of seconds is too long. The Safari engineers work late 
nights and weekends to shave every millisecond off the page load times, and if they’ve got a 
particular page loading in 0.7 seconds, for us to come along and say, “Oh, yeah, we want to 
add a five-second pause on that,” is completely unacceptable. It’s like telling Ferrari 
engineers that you want to make a little change to their car, and by-the-way, the top speed 
will now be 12 miles per hour. They’re not going to go for that.

That picture really describes how getaddrinfo() works, and fundamentally the problem is that 
it is blocked waiting for information that isn’t coming.



A

IPv6

IPv4

AAAA

7

So, this is good, but there’s still a problem.
There are many cases, we have found, with not just small web sites, but big-name web sites, 
where those quad-A queries fail. They don’t give an error. They don’t give a negative 
response. The queries are just ignored, so the client retransmits, and it fails with a timeout, 
and that takes a long time, and the problem there is that it’s blocking progress on the IPv4 
connection while we’re waiting for an IPv6 address that isn’t coming. People try to work out 
heuristics for how long to wait like, maybe, how long the address query takes as a predictor 
of how long the quad-A will take, but that’s not a good predictor because quite often the 
address record is cached in the local DNS cache but the quad-A isn’t. So, we don’t know how 
long to wait, and even waiting a couple of seconds is too long. The Safari engineers work late 
nights and weekends to shave every millisecond off the page load times, and if they’ve got a 
particular page loading in 0.7 seconds, for us to come along and say, “Oh, yeah, we want to 
add a five-second pause on that,” is completely unacceptable. It’s like telling Ferrari 
engineers that you want to make a little change to their car, and by-the-way, the top speed 
will now be 12 miles per hour. They’re not going to go for that.

That picture really describes how getaddrinfo() works, and fundamentally the problem is that 
it is blocked waiting for information that isn’t coming.



getaddrinfo()

A

IPv6

IPv4

AAAA

7

So, this is good, but there’s still a problem.
There are many cases, we have found, with not just small web sites, but big-name web sites, 
where those quad-A queries fail. They don’t give an error. They don’t give a negative 
response. The queries are just ignored, so the client retransmits, and it fails with a timeout, 
and that takes a long time, and the problem there is that it’s blocking progress on the IPv4 
connection while we’re waiting for an IPv6 address that isn’t coming. People try to work out 
heuristics for how long to wait like, maybe, how long the address query takes as a predictor 
of how long the quad-A will take, but that’s not a good predictor because quite often the 
address record is cached in the local DNS cache but the quad-A isn’t. So, we don’t know how 
long to wait, and even waiting a couple of seconds is too long. The Safari engineers work late 
nights and weekends to shave every millisecond off the page load times, and if they’ve got a 
particular page loading in 0.7 seconds, for us to come along and say, “Oh, yeah, we want to 
add a five-second pause on that,” is completely unacceptable. It’s like telling Ferrari 
engineers that you want to make a little change to their car, and by-the-way, the top speed 
will now be 12 miles per hour. They’re not going to go for that.

That picture really describes how getaddrinfo() works, and fundamentally the problem is that 
it is blocked waiting for information that isn’t coming.



Fixing AAAA timeout delay
Support IPv6, but…

Only do AAAA lookup

if machine has routable IPv6 address

8

Now, the standard solution that people give for this is that they say, “If the machine doesn’t 
have an IPv6 address, then there’s no point doing the quad-A address lookup.”

That masks the symptom, but the irony is that it’s a solution that makes IPv6 work acceptably 
well, only for people who’re not using IPv6. The moment you have an IPv6 address, the 
problem comes back.



IPv6 Disincentives
• Operating System

• Application Software (e.g. Web browser)

• ISP & Home Gateway

• Content Provider (e.g. Web sites)

9

And this just pushes problem from the application layer to the ISP.

Why is this bad?

The problem is that when an ISP decides to try deploying IPv6, they start getting customer 
complains that the web is really slow, and then the ISP turns off IPv6 and swears never to 
make that mistake again.

We want to make sure that doesn’t happen.



IPv6 Disincentives
• Operating System

• Application Software (e.g. Web browser)

• ISP & Home Gateway

• Content Provider (e.g. Web sites)

9

And this just pushes problem from the application layer to the ISP.

Why is this bad?

The problem is that when an ISP decides to try deploying IPv6, they start getting customer 
complains that the web is really slow, and then the ISP turns off IPv6 and swears never to 
make that mistake again.

We want to make sure that doesn’t happen.



getaddrinfo()

A

IPv6

IPv4

AAAA

10

getaddrinfo() fundamentally has this problem that:
the v4 connection is blocked waiting for a v6 address it doesn’t need, and
the v6 connection is blocked waiting for a v4 address it doesn’t need

We need to blow up that red node in the middle
and go to more of a dataflow model



Dataflow Model

A
IPv4

IPv6
AAAA

11

and now, if the IPv6 quad-A lookup times out, it doesn’t block the IPv4 goodness



Dataflow Model

A
IPv4

AAAA

11

and now, if the IPv6 quad-A lookup times out, it doesn’t block the IPv4 goodness



Dataflow Model

A
IPv4

AAAA

A
IPv4

11

and now, if the IPv6 quad-A lookup times out, it doesn’t block the IPv4 goodness



Dataflow Model

AAAA

A
IPv4

IPv6

12

or… the DNS may succeed but the TCP connection times out — it still doesn’t block IPv4



Dataflow Model

A

IPv6
AAAA

13

I don’t want to sound like I’m picking on IPv6 here, because the same is true in reverse
maybe IPv4 could fail, and IPv6 would still be able to complete in a timely fashion



Dataflow Model

A
IPv4

IPv6
AAAA

14

or maybe the DNS works but the IPv4 TCP connection times out.

The problem here is that the getaddrinfo API forces applications to be aware of IP addresses.

When you send an IP packet, the kernel ARPs for you to find the Ethernet address that goes 
with that IP address, and application isn’t involved with that process — it’s automatic and 
invisible to the application.

Similarly here, when an application wants to connect to a given hostname, it shouldn’t have 
to get involved with the mechanics of how that’s achieved.



Connect-by-Name

Allow applications to open 
TCP connections without 

handling IP addresses

15

The way we should do this is using what I call “connect-by-name” APIs.

Applications say, “Here’s the hostname; connect me to it.”

This is not some future goal — these APIs already exist. We just need more applications to 
start using them.



CFStreamCreatePairWithSocketToHost
 (kCFAllocatorDefault,
 CFSTR("www.apple.com"), 80,
 &readStream, &writeStream);

 ...

 CFWriteStreamOpen(writeStream);

Apple Core Foundation APIs

16

In Apple’s Core Foundation APIs, this is how you do it.

You make this opaque object called a CFStream, and you tell it the hostname and the port 
you want to connect to.

Then, when you open that stream, it asynchronously does whatever magic is necessary to get 
you a connection.

The application here never sees an address. It doesn’t know whether it’s IPv4 or IPv6.

This is not limited to Apple APIs.



CFStreamCreatePairWithSocketToHost
 (kCFAllocatorDefault,
 CFSTR("www.apple.com"), 80,
 &readStream, &writeStream);

 ...

 CFWriteStreamOpen(writeStream);

Apple Core Foundation APIs

16

In Apple’s Core Foundation APIs, this is how you do it.

You make this opaque object called a CFStream, and you tell it the hostname and the port 
you want to connect to.

Then, when you open that stream, it asynchronously does whatever magic is necessary to get 
you a connection.

The application here never sees an address. It doesn’t know whether it’s IPv4 or IPv6.

This is not limited to Apple APIs.



CFStreamCreatePairWithSocketToHost
 (kCFAllocatorDefault,
 CFSTR("www.apple.com"), 80,
 &readStream, &writeStream);

 ...

 CFWriteStreamOpen(writeStream);

Apple Core Foundation APIs

16

In Apple’s Core Foundation APIs, this is how you do it.

You make this opaque object called a CFStream, and you tell it the hostname and the port 
you want to connect to.

Then, when you open that stream, it asynchronously does whatever magic is necessary to get 
you a connection.

The application here never sees an address. It doesn’t know whether it’s IPv4 or IPv6.

This is not limited to Apple APIs.



Java APIs
InetSocketAddress socketAddress =
 new InetSocketAddress(host, port);

SocketChannel channel = 
 SocketChannel.open(socketAddress);

channel.write(buffer);

17

Java has a similar thing.

Here we make an opaque object called an InetSocketAddress from a host and port, and then 
when we open that SocketChannel, that can complete under the covers, doing whatever is 
necessary, without the application ever seeing an IP address.

Windows also has connect-by-name APIs. I don’t have code fragments for those here.

Now, I’m not saying that all implementations of these APIs necessarily do the right thing 
today, but if applications are using these APIs, then the implementations can be improved 
over time.

The difference with getaddrinfo() and similar APIs is that they fundamentally can’t be 
improved over time. The API definition is that they return you a full list of addresses, so they 
have to wait until they have that full list to give you. There’s no way getaddrinfo can return 
you a partial list and then later give you some more.



Java APIs
InetSocketAddress socketAddress =
 new InetSocketAddress(host, port);

SocketChannel channel = 
 SocketChannel.open(socketAddress);

channel.write(buffer);

17

Java has a similar thing.

Here we make an opaque object called an InetSocketAddress from a host and port, and then 
when we open that SocketChannel, that can complete under the covers, doing whatever is 
necessary, without the application ever seeing an IP address.

Windows also has connect-by-name APIs. I don’t have code fragments for those here.

Now, I’m not saying that all implementations of these APIs necessarily do the right thing 
today, but if applications are using these APIs, then the implementations can be improved 
over time.

The difference with getaddrinfo() and similar APIs is that they fundamentally can’t be 
improved over time. The API definition is that they return you a full list of addresses, so they 
have to wait until they have that full list to give you. There’s no way getaddrinfo can return 
you a partial list and then later give you some more.



Java APIs
InetSocketAddress socketAddress =
 new InetSocketAddress(host, port);

SocketChannel channel = 
 SocketChannel.open(socketAddress);

channel.write(buffer);

17

Java has a similar thing.

Here we make an opaque object called an InetSocketAddress from a host and port, and then 
when we open that SocketChannel, that can complete under the covers, doing whatever is 
necessary, without the application ever seeing an IP address.

Windows also has connect-by-name APIs. I don’t have code fragments for those here.

Now, I’m not saying that all implementations of these APIs necessarily do the right thing 
today, but if applications are using these APIs, then the implementations can be improved 
over time.

The difference with getaddrinfo() and similar APIs is that they fundamentally can’t be 
improved over time. The API definition is that they return you a full list of addresses, so they 
have to wait until they have that full list to give you. There’s no way getaddrinfo can return 
you a partial list and then later give you some more.



Summary
• Use Concurrency & Asynchrony

• Sends a few extra packets to eliminate
unacceptable timeouts

• Don’t make ISPs regret offering IPv6

18

So this is the summary of my message today:
* Application programmers: Use Concurrency & Asynchrony to give your users a good user 
experience.
* Opening multiple connections in parallel, and then resetting the ones you don’t need, does 
mean that we send a few extra packets on the network, but that’s the price we pay to make 
an acceptable IPv6 user experience, that people will be willing to live with.
* And the high-level message is: We want ISPs to start offering IPv6 to their customers, and 
we don’t want them to regret doing that when they try it.


