
Base Spec Errata

IETF 73
Tony Hansen

http://www.rfc-editor.org/errata_search.php?
rfc=4871&rec_status=15&presentation=table

(1376) 3.4.3/.4 Tony Hansen 2008-03-21
(1377) 3.4.4 Tony Hansen 2008-03-21
(1378) 3.5 Tony Hansen 2008-03-21
(1379) 3.5 Tony Hansen 2008-03-21
(1380) 3.5 Tony Hansen 2008-03-21
(1381) 3.5/3.6.1 Tony Hansen 2008-03-21
(1382) 3.6.1 Tony Hansen 2008-03-21
(1383) 3,6.1 Tony Hansen 2008-03-21
(1384) 4.3.4 Tony Hansen 2008-03-22
(1385) 3.6.1 Murray S. Kucherawy 2008-03-23
(1386) 3.5 Mark Delany 2008-03-24
(1461) 3.5 Frank Ellermann 2008-07-04
(1487) 3.6.1 Murray S. Kucherawy 2008-08-14
(1532) 3.6.1 Tony Hansen 2008-09-30
(1596) 2.4/3.7 Tony Hansen 2008-11-17

Errata 1383
• Errata says to add examples to g= description

Section 3,6.1 says:
g= Granularity of the key (plain-text; OPTIONAL, default is "*").

Wildcarding allows matching for addresses such as "user+*" or
"*-offer". An empty "g=" value never matches any addresses.

It should say:
g= Granularity of the key (plain-text; OPTIONAL, default is "*").

Wildcarding allows matching for addresses such as "user+*", "*-
offer", "foo*bar", "ex*am*, "ex*am*pleple" or "*exam*" or "*exam*pleple"". An empty "g="
value never matches any addresses.

• This was prompted by someone at the interop noting that
some people had not coded for the example of a * in the
middle.

• The text says “the single, optional ‘*’ character”
• The ABNF allows single * at beginning, middle or end.

Choices

• Choice 1: The errata is wrong with respect
to multiple wildcards. However, it would
still be useful to add an example of
foo*bar.

• Choice 2: One implementer said:
– we … allow “*” anywhere, and more than

once, in the “g=“ value.

Errata 1378

• Is “a=” required or optional?
– §3.3 says that rsa-sha256 is the default if no

algorithm is specified
– §3.5 says “a=” is REQUIRED

• Need to pick one

• One response:
– We currently require a= when verifying, but

are willing to change

Errata 1532

• There should be a note added somewhere
to section 3.6.1 saying that if a v= is not
found at the beginning of the DKIM key
record, the DNS key record should be
interpreted as for DomainKeys and
described in RFC 4870. In addition, a note
should be added about the difference in
the interpretation of an empty "g=",
which is the only incompatible tag.

Discussion

• Not right direction:
– people should not be using empty g= tags in

DK keys
– Makes all existing verifiers non-compliant
– Compatibility note for DK recommending

against using g=;
• Do nothing
• DK people are adding DKIM signatures,

without updating keys with g=; in them
– And does not need to be a MUST

Suggestion for updated text
• Compatibility Note for DomainKeys

– The definition given here for the key record is upwardly
compatible with what is used for DomainKeys, with the exception
of the "g=" value. In DomainKeys, a key record empty "g=" value
is equivalent to "g=*", while DKIM treats that value as matching
nothing. The value "g=*" means the same in both DomainKeys
and DKIM.

– DomainKeys deployers are encouraged to at least switch their
key records to using the equivalent "g=*" value, which works
equivalently for both DomainKeys and DKIM.

– A DKIM implementation MAY choose to use the lack of a v=
value at the beginning of the key record as an indicator that the
key record is a DomainKeys key record, and interpret an empty
"g=" value as if it were written "g=*".

Errata 1596

• When calculating hash, what to do with
WSP in bh=
– bh=WSPaWSPbWSPcWSP;
– bh=WSPaWSPbWSPcWSP

<end-of-header>

§ 3.5

• § 3.5 “b=“ deletion description talks about adding
FWS “in” the value, but not “before” or “after”.
– b= The signature data (base64;
REQUIRED). Whitespace is ignored in this
value and MUST be ignored when
reassembling the original signature. In
particular, the signing process can
safely insert FWS in this value in
arbitrary places to conform to line-
length limits.

§3.2
• Notice that the §3.2 definition of tag-val

tag-spec = [FWS] tag-name [FWS] "=" [FWS] tag-
value [FWS]
tag-value = [tval 0*(1*(WSP / FWS) tval)]
; WSP and FWS prohibited at beginning and end

explicitly does *not* include either the FWS before its
value or after.

And the text in section 3.2 explicitly says that the
surrounding WSP is not part of the value.

Section 3.5 grammar for sig-b-tag-
data

•
And notice that the section 3.5 grammar
around sig-b-tag-data

sig-b-tag = %x62 [FWS] "=" [FWS] sig-b-tag-data
sig-b-tag-data = base64string

explicitly mentions FWS as being separate
from the data.

Conclusions from those

• By the above definitions, tag-val and sig-b-
tag-data explicitly do *not* include the
FWS either before or after it.

Base64string
• However, the definition of base64string

base64string = 1*(ALPHA / DIGIT / "+" / "/" / [FWS])
["=" [FWS] ["=" [FWS]]]

tosses FWS in to its production. So it is
ambiguous from the grammar whether the
leading/trailing FWS is part of sig-b-tag-data or
part of base64string. (This grammar ambiguity is
in *all* of the uses of base64string in sections
3.5 and 3.6.1.)

Back to section 3.5

• In addition, the text in the section 3.5 b=
description certainly implies that white
space before and after the hash should
not affect the verification.

Back to the problem

• So by these, “with the value of the 'b=' tag
deleted” could mean
1.everything after the "=" which includes the

leading/trailing white space,
2.the *tag-value* grammar production which

excludes leading/trailing white space, or
3.the *sig-b-tag-data* grammar production that

may or may not include leading/trailing
white space.

Suggestion in Errata
• Add text "(including all surrounding whitespace)" to the description

of deleting the b= value.
• 3.7. Computing the Message Hashes
• 2. The DKIM-Signature header field that exists (verifying) or will be

inserted (signing) in the message, with the value of the "b=" tag
(including all surrounding whitespace) deleted (i.e., treated as the
empty string), canonicalized using the header canonicalization
algorithm specified in the "c=" tag, and without a trailing CRLF.

• Fix the ambiguity in the base64string grammar to remove leading
and trailing FWS:
ALPHADIGITPS = (ALPHA / DIGIT / "+" / "/")
base64string = ALPHADIGITPS *([FWS] ALPHADIGITPS)

[[FWS] "=" [[FWS] "="]]

