
This work is partly funded by the
German Research Foundation
(DFG) through the Center of
Excellence (SFB) 627 "Nexus".

Universität Stuttgart
Institute of Communication Networks
and Computer Engineering (IKR)
Prof. Dr.-Ing. Dr. h.c. mult. P. J. Kühn

Quick-Start, Jump-Start,
and Other Fast Startup
Approaches
Implementation Issues and Performance

Michael Scharf
michael.scharf@ikr.uni-stuttgart.de
November 17, 2008



2© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Outline

• Flow Startup Basics

• Fast Startup Mechanisms

• Implementation Issues

• Performance Experiments

• Conclusions and Future Work



3© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Flow Startup Basics – Introduction

The Flow Startup Challenge

• Default TCP flow startup mechanism since 1988: Slow-Start

• Two important functions

– Probe the network to find reasonable values for cwnd and ssthresh

– Initialize the ACK clock
Doubling cwnd on each arriving ACK is simple and effective

• Slow-Start not perfect for interactive applications

... if the bandwidth-delay product is large

... for mid-sized data transfers

• Question: Can we do better? Why can’t we immediately fully use a path?

– If it was a trivial problem, it would already have been solved

– Problem becomes more pressing as bandwidth-delay-products increase

– Disclaimer: This talk will not answer this question. It only explores the solution space.



4© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Flow Startup Basics – Some Thoughts

Design Space

Aggressive
fast startup

Bandwidth
estimation

ssthresh
adaptation

Limited SS FAST, ...

Window
based

Rate
based

Data
based

Jump−Start

Slow−Start
EnhancedStandard

Slow−Start

Reno, Cubic, ...

End−to−end congestion control
(implicit notification)

Sporadic
feedback

Quick−Start

Frequent

XCP, RCP, ...

(explicit notification)
Router−assisted congestion control

Flow startup approaches

feedback



5© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Flow Startup Basics – Some Thoughts

Design Space

Further Alternatives

• Middleboxes such as WAN optimizers or transparent HTTP proxies

→ Break end-to-end semantics

• Parallel usage of several/many TCP connections

→ Fairness issue and risk of over-aggressiveness

Aggressive
fast startup

Bandwidth
estimation

ssthresh
adaptation

Limited SS FAST, ...

Window
based

Rate
based

Data
based

Jump−Start

Slow−Start
EnhancedStandard

Slow−Start

Reno, Cubic, ...

End−to−end congestion control
(implicit notification)

Sporadic
feedback

Quick−Start

Frequent

XCP, RCP, ...

(explicit notification)
Router−assisted congestion control

Flow startup approaches

feedback

Scope



6© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Flow Startup Basics – Some Thoughts

Potential Input Parameters

• Round-Trip Time (RTT), known from 3-way handshake

• Cached state variables for this destination

– Intra-connection ... Slow-Start after idle

– Inter-connection ... Congestion manager

• Application communication characteristics (e. g., amount of queued data)

• Local interface capacity

– Automatically detected from network interface

– Manually configured by administrator/user

• Application requirements (bandwidth,
response deadline, ...)

– Implicitly derived by heuristics inside the
network stack (e. g., port 80/http)

– Explicitly signaled by app interface
(e. g., similar to NO_DELAY socket option)

• "Oracle" service that provides rough estimate of end-to-end capacity (ALTO++)

• Explicit router feedback of currently available bandwidth on the path

Client Server

SYN

SYN−ACK

ACK

...

HTTP/1.1 200 OK

Content−Type: text/html

Content−Length: ...

Request

Response

GET /index.html HTTP/1.1

Host: www.example.com

Accept: text/html

Connection: keep−alive

Performance: deadline=2



7© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Flow Startup Basics – Some Thoughts

Fundamental Fast Startup Phases

• Sensing: Derive basic path characteristics

• Probing: Start to send data

• Validation: Test whether the initial choice was reasonable

• Continuation: Switch to continuous congestion control

→ Several different options how to realize these phases

TimeSender

Receiver

SYN Data Further data

SYN−ACK First ACK Last ACK

Sensing Validation ContinuationProbing



8© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Flow Startup Basics – Some Thoughts

Slow-Start is Not Only Occurring After Connection Setup...

• Congestion window validation (RFC 2861) reduces cwnd during application-limited
periods or after longer idle times

• Fast startup also after idle times possible

• Typically, more information about path characteristics available ... But is it still valid?

→ Several further degrees of freedom whether to repeat a fast startup

Application

Socket

TCP

Time

Time
Queue

Write data

CWND Validation

Fast startup decision

Congestion window



9© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Fast Startup Mechanisms – Quick-Start

Quick-Start TCP Extension Overview

• Specification in RFC 4782 (experimental)

• Sensing: Explicit router feedback to determine
the available bandwidth on the path

– Request for a data rate in a new IP option

– All routers have to approve the request

– Resulting rate returned in a new TCP option

• Probing: Rate paced transfer with approved rate

• Verification: Undo of cwnd increase in case of packet loss of paced packets

• Continuation: Default TCP congestion control

• Open questions: Adapt ssthesth after verification? Router admission control strategy?

→ "Ask before you shoot"

Router Router

pacing

Rate!

Rate?

Rate

Standard
algorithms

Host 2Host 1

IP

IP

IP

TCP

TCP

TCP

SYN

SYN,ACK
ACK QS report

QS response

QS request

Echo 

New ACK



10© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Fast Startup Mechanisms – Jump-Start

Jump-Start Overview

• Proposed by D. Liu, M. Allman, S. Jin and L. Wang at PFLDNET 2007

– Basic idea: Play out the data queued in the socket paced over the first RTT

– Risk over-shooting, but carefully reduce window if packet loss has occurred

• Sensing: Default TCP, just estimate RTT

• Probing: Send queued data using rate pacing

– Initial data rate depends on available data, RTT, and receiver window

– Thresholds possible, i. e., send at most 64 KiB

• Verification: Modified TCP loss recovery

– Normal TCP retransmission mechanism, including cwnd halving

– Count number R of retransmitted packets

– If R=0: Continue with default TCP congestion control

– If R>0: Set cwnd = (D-R)/2 at end of loss recovery, where D is the number packets that
have been paced over the first RTT

• Continuation: Default TCP congestion control

→ "Shoot before you ask"



11© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Fast Startup Mechanisms – Jump-Start

Open Question: Can This Work?

• Heavy-tailed flow sizes: Only few connections use a large initial rate

• The longer the path, the smaller the initial rate (if a maximum threshold is used)

• The existing Slow-Start may also significantly overshoot, without causing too much pain

1 10 100 1000
RTT [ms]

0.1

1

10

100

1000

In
iti

al
 s

en
di

ng
 r

at
e 

[M
bi

t/s
]

Initial window 3 MSS
Jump-Start with 16 KiB
Jump-Start with 64 KiB

Typical WAN

Typical
LAN



12© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Fast Startup Mechanisms – Further Alternatives

"More-Start"

• Idea: Quick-Start without explicit router support

• Sensing: Choose an initial sending rate

– e. g. explicitly selected by application
u_int rate = 10000000; /* 10 Mbit/s */
setsockopt(fd, SOL_TCP, 15, &rate, sizeof(u_int));

– e. g. from congestion manager, local interface speed

– e. g. "oracle" service for remote peers (ALTO++)

• Probing, validation, continuation: Similar to
Jump-Start

→ "Ask someone before you shoot"

"Initial-Start"

• Just increase the initial value of cwnd to a value larger than RFC 3390

• No change in TCP error recovery mechanisms

• Initial cwnd could be statically set, or dynamically be obtained like in the previous
approaches

→ "Keep it simple"

Oracle

Router

Appl.

TCP

IP

Appl.

TCP

IP

Appl.

TCP

IP

Link

Link

Link

End system End system

End system

Internet

IP IP

IP

IP

IP



13© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Implementation Issues – Quick-Start

Implementation of University of Stuttgart

• Quick-Start TCP and IP functions in Linux 2.6.24 kernel[1]

• Quick-Start IP functions in an IXP 2400 network processor[2]

Lessons Learned

• Quick-Start processing feasible at high link speeds

• Limited implementation complexity

• A couple of challenges

– Setting of IP options from TCP layer

• TCP MSS must be reduced to leave space for IP option

• Interactions with TCP segmentation offload (TSO)

– Multiple parallel requests, SYN cookies

– Automatic determination of link capacity

[1] M. Scharf and H. Strotbek, "Performance evaluation of Quick-Start TCP with a Linux kernel implementation,''
Proc. IFIP Networking 2008, Springer LNCS 4982, pp. 703-714, May 2008
[2] S. Hauger, M. Scharf, J. Kögel, and C. Suriyajan, "Quick-Start and XCP on a network processor:
Implementation issues and performance evaluation,'' Proc. IEEE HPSR, May 2008



14© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Implementation Issues – Jump-Start

Implementation of University of Stuttgart

• New Jump-Start implementation in Linux 2.6.24 kernel

• Work in progress, not completely validated so far

Lessons Learned

• Of course, Jump-Start is doable

• Needs a state engine and timers for rate-pacing

• How to determine the queued data in socket?

– Easy: sk->sk_write_queue.qlen

– However, socket processing workflow must be adapted

• Modified TCP error recovery

– Easy: Additional counter for retransmissions

– However: cwnd=max(1,(D-R)/2)

• Problem with flow control, similar to Quick-Start[1]

[1] Michael Scharf, Sally Floyd, Pasi Sarolathi: "TCP Flow Control for Fast
Startup Schemes", July 2008, draft-scharf-tcpm-flow-control-quick-start-
00.txt

Determine MSS

if needed

buffer (maximum 1 MSS)

Set PUSH flag?

with PUSH flag

Further data?
Yes

NoYes

No

Send pending frames

Send pending frames

Copy data into socket

Allocate socket buffer



15© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Implementation Issues – Complexity Comparison

Quick-Start in Linux Kernel Jump-Start in Linux Kernel

Typical flow of packets

Application

User space

Kernel space

Device driver

IP

TCP

Config

Cong.

ip_rcv

net_rx_action

ip_local_deliver

Routing
ip_forward ip_forward_finish

ip_queue_xmit

ip_finish_output

dev_queue_xmit

tcp_transmit_skb

control
Analysis

tcp_v4_rcv

Fast/slow path

Socket interface

State

Send ACK

tcp_write_xmit Handle SYN 

do_tcp_setsockopt

Sysctl config

Sysctl config

ip_build_and_
send_packeting_frames

ip_push_pend

tcp_sendmsg

Options

Rate

pacing

Options

Traffic metering,

adm. control

QS TTL decr.

Hist.

Metering, adm.

Flow control

Activate QS New sysctl

Additional code

OptionsAutom. activation

Typical flow of packets

Application

User space

Kernel space

Device driver

IP

TCP

Config

Cong.

ip_rcv

net_rx_action

ip_local_deliver

Routing
ip_forward ip_forward_finish

ip_queue_xmit

ip_finish_output

dev_queue_xmit

tcp_transmit_skb

control
Analysis

tcp_v4_rcv

Fast/slow path

Socket interface

State

Send ACK

tcp_write_xmit Handle SYN 

do_tcp_setsockopt

Sysctl config

Sysctl config

ip_build_and_
send_packeting_frames

ip_push_pend

tcp_sendmsg

Rate

pacing

Flow control

New sysctl

Additional code

Autom. activation

Recovery

→ ca. 2000 LOC → ca. 600 LOC



16© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Performance Experiments

Methodology

• Lab measurements

– Patched Linux 2.6.24 kernels

– Two or more PCs, directly connected by Ethernet segments, interface speed manually set

– Delay emulation by "netem"

• Simulations

– Simulation of patched Linux 2.6.18 kernel network stacks using the "Network Simulation
Cradle" (NSC) version 0.3.0 (Sam Jansen, University of Waikato)

– Different client-server application workloads

– Classical dumbbell topology with finite buffer in front of central bottleneck link

T

T

Bottleneck

Client

Client

Client

Server

Server

Server



17© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Performance Experiments – Speedup

Illustration of Different Fast Startups (10 Mbit/s, 200 ms RTT)

• As to be expected, all new schemes are faster than Slow-Start

• Somewhat different behavior

QS request
IP TCP

QS response
IP TCP

QS report
IP TCP

SYN,ACK

SYN

ACK

Request

S
er

ve
r 

re
sp

on
se

 ti
m

e

Client

2 GB RAM2 GB RAM
P4 2.8 GHz P4 2.8 GHz

Server

10 Mbit/s Ethernet

Response

10
3

10
4

10
5

10
6

10
7

Transfer data size [byte]

0.1

1

10

S
er

ve
r 

re
sp

on
se

 ti
m

e 
[s

]

Analytical model
Simulation (Linux 2.6.18)
Measurement (Linux 2.6.24)

Slow-Start

Jump-Start (64 KiB)

Quick-Start (10 Mbit/s)

More-Start (10 Mbit/s)

Initial-Start (10 MSS)

Initial-Start (83 MSS)

Setup

• 2 PCs with a Ethernet link

• Simple C programs for client and server

• Kernel 2.6.24, Ubuntu 7.04, default config.
– "Cubic" congestion control
– SACKs enabled

• Additional delay by "netem"

• Quick-Start request by server in SYN,ACK



18© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Performance Experiments – Speedup

Speedup Compared to Slow-Start (10 Mbit/s, 200 ms RTT)

• Significant benefit for mid-sized transfers from 10KB to 1 MB

• Measurement and simulations match analytical models[1]

[1] Michael Scharf, "Performance Analysis of the Quick-Start TCP Extension", Proc. IEEE Broadnets, Raleigh, NC,
USA, Sept. 2007

QS request
IP TCP

QS response
IP TCP

QS report
IP TCP

SYN,ACK

SYN

ACK

Request

S
er

ve
r 

re
sp

on
se

 ti
m

e

Client

2 GB RAM2 GB RAM
P4 2.8 GHz P4 2.8 GHz

Server

10 Mbit/s Ethernet

Response

10
3

10
4

10
5

10
6

10
7

Transfer data size [byte]

0

1

2

3

4

5

R
el

at
iv

e 
im

pr
ov

em
en

t c
om

pa
re

d 
to

 S
S

Analytical model
Simulation (Linux 2.6.18)
Measurement (Linux 2.6.24)

Jump-Start (64 KiB)

Quick-Start (10 Mbit/s)

More-Start (10 Mbit/s)

Initial-Start (10 MSS)

Initial-Start (83 MSS)

Setup

• 2 PCs with a Ethernet link

• Simple C programs for client and server

• Kernel 2.6.24, Ubuntu 7.04, default config.
– "Cubic" congestion control
– SACKs enabled

• Additional delay by "netem"

• Quick-Start request by server in SYN,ACK



19© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Performance Experiments – Flow Control Issue

The Impact of Linux Buffer Autotuning (10 Mbit/s, 200 ms RTT)

• Case 1: Sender modification only: Slow-Start is enforced by flow-control

• Case 2: Receiver that announces large window[1]: Fast startup is possible

• Case 3: Sender selectively ignores rwnd during probing: Works, but is this a good idea?
[1] Michael Scharf, Sally Floyd, Pasi Sarolathi: "TCP Flow Control for Fast Startup Schemes", July 2008, draft-scharf-
tcpm-flow-control-quick-start-00.txt

0

10
6

S
eq

. n
o.

 [b
yt

e]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Time since SYN segment [s]

0

2

4

6

8

10

D
at

a 
ra

te
 [M

bi
t/s

]

SS
QS
JS at sender
JS at sender and recv.
JS at sender, "no rwnd"

Setup

• Simulation with Linux kernel 2.6.18
– "Cubic" congestion control
– SACKs enabled

• 1 client, 1 server

• Simple client-server request

• Central buffer: 1000 packets

• Quick-Start request by server in SYN,ACK



20© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Performance Experiments – Initial Comparison

Shared Bottleneck Scenario (10 Mbit/s, 200 ms RTT)

• Quick-Start: Close to Slow-Start as load increased, because of admission control

• Jump-Start: Reasonable behavior

• More-Start: Effects of over-shooting observable for higher load

• Initial-Start: Setting an initial window of the order of the BDP is critical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Average downlink load

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

M
ea

n 
se

rv
er

 r
es

po
ns

e 
tim

e 
[m

s]

Simulation (Linux 2.6.18)

Slow-Start

Quick-Start (10 Mbit/s)

Jump-Start (64 KiB)

More-Start (10 Mbit/s)

Initial-Start (83 MSS)

Initial-Start (10 MSS)

Setup

• Simulation with Linux kernel 2.6.18
– "Cubic" congestion control
– SACKs enabled

• 25 clients, 25 server

• Perstent TCP connections

• Client-server application model
– Response size Pareto distributed,

mean 250kB, shape factor 1.1
– Neg.-exp. distr. inter-arrival time

• Central buffer: 50 packets

• Quick-Start request by server in SYN,ACK



21© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Performance Experiments – Further Results

Observations

• Jump-Start is simple and behaves quite well in most experiments so far
... but, of course, it can significantly fail as well

• Naively activating Quick-Starts for all small transfers does not improve performance if
admission control is used

→ Either explicitly activated by application, or only, if a larger transfer can be expected

• If we had a rough estimate for the available bandwidth, just starting with this rate might
not be that harmful

• Benefit of rate pacing vs. just increasing cwnd?

– Rate pacing seems to be less harmful to competing traffic

– Not too much difference in case of significant overshoot

• Small total speedup in more complex scenarios (e. g., draft-irtf-tmrg-tests-00.txt)

– Most RTTs and transfer sizes are small

– Average improvement for mid-sized transfers less than 1 second

• ...

• But: Not completely backed by data so far



22© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Conclusions and Future Work

Conclusions

• Any fast startup is tricky, and there is no guarantee to be better than Slow-Start

• Router support (Quick-Start TCP) could help

– But: Significant deployment issues

– Even with router support an intelligent usage is needed

• End-to-end solution could use further parameters that are locally available

– Jump-Start is simple and has interesting properties
– But design space is not completely explored so far

• Ongoing implementation efforts to get fast startup schemes into the Linux kernel

• Early experiments show that speedup is indeed possible

Future Work

• Experiments, experiments, experiments

• New cross-layer interfaces, e. g., between applications and network stack?


