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Flow Startup Basics – Introduction

The Flow Startup Challenge

• Default TCP flow startup mechanism since 1988: Slow-Start

• Two important functions

– Probe the network to find reasonable values for cwnd and ssthresh

– Initialize the ACK clock
Doubling cwnd on each arriving ACK is simple and effective

• Slow-Start not perfect for interactive applications

... if the bandwidth-delay product is large

... for mid-sized data transfers

• Question: Can we do better? Why can’t we immediately fully use a path?

– If it was a trivial problem, it would already have been solved

– Problem becomes more pressing as bandwidth-delay-products increase

– Disclaimer: This talk will not answer this question. It only explores the solution space.
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Flow Startup Basics – Some Thoughts

Design Space
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Flow Startup Basics – Some Thoughts

Design Space

Further Alternatives

• Middleboxes such as WAN optimizers or transparent HTTP proxies

→ Break end-to-end semantics

• Parallel usage of several/many TCP connections

→ Fairness issue and risk of over-aggressiveness
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Flow Startup Basics – Some Thoughts

Potential Input Parameters

• Round-Trip Time (RTT), known from 3-way handshake

• Cached state variables for this destination

– Intra-connection ... Slow-Start after idle

– Inter-connection ... Congestion manager

• Application communication characteristics (e. g., amount of queued data)

• Local interface capacity

– Automatically detected from network interface

– Manually configured by administrator/user

• Application requirements (bandwidth,
response deadline, ...)

– Implicitly derived by heuristics inside the
network stack (e. g., port 80/http)

– Explicitly signaled by app interface
(e. g., similar to NO_DELAY socket option)

• "Oracle" service that provides rough estimate of end-to-end capacity (ALTO++)

• Explicit router feedback of currently available bandwidth on the path

Client Server

SYN

SYN−ACK

ACK

...

HTTP/1.1 200 OK

Content−Type: text/html

Content−Length: ...

Request

Response

GET /index.html HTTP/1.1

Host: www.example.com

Accept: text/html

Connection: keep−alive

Performance: deadline=2
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Flow Startup Basics – Some Thoughts

Fundamental Fast Startup Phases

• Sensing: Derive basic path characteristics

• Probing: Start to send data

• Validation: Test whether the initial choice was reasonable

• Continuation: Switch to continuous congestion control

→ Several different options how to realize these phases

TimeSender

Receiver

SYN Data Further data

SYN−ACK First ACK Last ACK

Sensing Validation ContinuationProbing
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Flow Startup Basics – Some Thoughts

Slow-Start is Not Only Occurring After Connection Setup...

• Congestion window validation (RFC 2861) reduces cwnd during application-limited
periods or after longer idle times

• Fast startup also after idle times possible

• Typically, more information about path characteristics available ... But is it still valid?

→ Several further degrees of freedom whether to repeat a fast startup

Application

Socket

TCP

Time

Time
Queue

Write data

CWND Validation

Fast startup decision

Congestion window
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Fast Startup Mechanisms – Quick-Start

Quick-Start TCP Extension Overview

• Specification in RFC 4782 (experimental)

• Sensing: Explicit router feedback to determine
the available bandwidth on the path

– Request for a data rate in a new IP option

– All routers have to approve the request

– Resulting rate returned in a new TCP option

• Probing: Rate paced transfer with approved rate

• Verification: Undo of cwnd increase in case of packet loss of paced packets

• Continuation: Default TCP congestion control

• Open questions: Adapt ssthesth after verification? Router admission control strategy?

→ "Ask before you shoot"

Router Router

pacing
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Rate?

Rate

Standard
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Host 2Host 1
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TCP
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SYN

SYN,ACK
ACK QS report
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Fast Startup Mechanisms – Jump-Start

Jump-Start Overview

• Proposed by D. Liu, M. Allman, S. Jin and L. Wang at PFLDNET 2007

– Basic idea: Play out the data queued in the socket paced over the first RTT

– Risk over-shooting, but carefully reduce window if packet loss has occurred

• Sensing: Default TCP, just estimate RTT

• Probing: Send queued data using rate pacing

– Initial data rate depends on available data, RTT, and receiver window

– Thresholds possible, i. e., send at most 64 KiB

• Verification: Modified TCP loss recovery

– Normal TCP retransmission mechanism, including cwnd halving

– Count number R of retransmitted packets

– If R=0: Continue with default TCP congestion control

– If R>0: Set cwnd = (D-R)/2 at end of loss recovery, where D is the number packets that
have been paced over the first RTT

• Continuation: Default TCP congestion control

→ "Shoot before you ask"
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Fast Startup Mechanisms – Jump-Start

Open Question: Can This Work?

• Heavy-tailed flow sizes: Only few connections use a large initial rate

• The longer the path, the smaller the initial rate (if a maximum threshold is used)

• The existing Slow-Start may also significantly overshoot, without causing too much pain
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Fast Startup Mechanisms – Further Alternatives

"More-Start"

• Idea: Quick-Start without explicit router support

• Sensing: Choose an initial sending rate

– e. g. explicitly selected by application
u_int rate = 10000000; /* 10 Mbit/s */
setsockopt(fd, SOL_TCP, 15, &rate, sizeof(u_int));

– e. g. from congestion manager, local interface speed

– e. g. "oracle" service for remote peers (ALTO++)

• Probing, validation, continuation: Similar to
Jump-Start

→ "Ask someone before you shoot"

"Initial-Start"

• Just increase the initial value of cwnd to a value larger than RFC 3390

• No change in TCP error recovery mechanisms

• Initial cwnd could be statically set, or dynamically be obtained like in the previous
approaches

→ "Keep it simple"
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Implementation Issues – Quick-Start

Implementation of University of Stuttgart

• Quick-Start TCP and IP functions in Linux 2.6.24 kernel[1]

• Quick-Start IP functions in an IXP 2400 network processor[2]

Lessons Learned

• Quick-Start processing feasible at high link speeds

• Limited implementation complexity

• A couple of challenges

– Setting of IP options from TCP layer

• TCP MSS must be reduced to leave space for IP option

• Interactions with TCP segmentation offload (TSO)

– Multiple parallel requests, SYN cookies

– Automatic determination of link capacity

[1] M. Scharf and H. Strotbek, "Performance evaluation of Quick-Start TCP with a Linux kernel implementation,''
Proc. IFIP Networking 2008, Springer LNCS 4982, pp. 703-714, May 2008
[2] S. Hauger, M. Scharf, J. Kögel, and C. Suriyajan, "Quick-Start and XCP on a network processor:
Implementation issues and performance evaluation,'' Proc. IEEE HPSR, May 2008
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Implementation Issues – Jump-Start

Implementation of University of Stuttgart

• New Jump-Start implementation in Linux 2.6.24 kernel

• Work in progress, not completely validated so far

Lessons Learned

• Of course, Jump-Start is doable

• Needs a state engine and timers for rate-pacing

• How to determine the queued data in socket?

– Easy: sk->sk_write_queue.qlen

– However, socket processing workflow must be adapted

• Modified TCP error recovery

– Easy: Additional counter for retransmissions

– However: cwnd=max(1,(D-R)/2)

• Problem with flow control, similar to Quick-Start[1]

[1] Michael Scharf, Sally Floyd, Pasi Sarolathi: "TCP Flow Control for Fast
Startup Schemes", July 2008, draft-scharf-tcpm-flow-control-quick-start-
00.txt
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Implementation Issues – Complexity Comparison
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Performance Experiments

Methodology

• Lab measurements

– Patched Linux 2.6.24 kernels

– Two or more PCs, directly connected by Ethernet segments, interface speed manually set

– Delay emulation by "netem"

• Simulations

– Simulation of patched Linux 2.6.18 kernel network stacks using the "Network Simulation
Cradle" (NSC) version 0.3.0 (Sam Jansen, University of Waikato)

– Different client-server application workloads

– Classical dumbbell topology with finite buffer in front of central bottleneck link

T

T

Bottleneck

Client

Client

Client

Server

Server

Server
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Performance Experiments – Speedup

Illustration of Different Fast Startups (10 Mbit/s, 200 ms RTT)

• As to be expected, all new schemes are faster than Slow-Start

• Somewhat different behavior
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• 2 PCs with a Ethernet link

• Simple C programs for client and server

• Kernel 2.6.24, Ubuntu 7.04, default config.
– "Cubic" congestion control
– SACKs enabled

• Additional delay by "netem"

• Quick-Start request by server in SYN,ACK



18© 2008 Universität Stuttgart • IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Performance Experiments – Speedup

Speedup Compared to Slow-Start (10 Mbit/s, 200 ms RTT)

• Significant benefit for mid-sized transfers from 10KB to 1 MB

• Measurement and simulations match analytical models[1]

[1] Michael Scharf, "Performance Analysis of the Quick-Start TCP Extension", Proc. IEEE Broadnets, Raleigh, NC,
USA, Sept. 2007
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Performance Experiments – Flow Control Issue

The Impact of Linux Buffer Autotuning (10 Mbit/s, 200 ms RTT)

• Case 1: Sender modification only: Slow-Start is enforced by flow-control

• Case 2: Receiver that announces large window[1]: Fast startup is possible

• Case 3: Sender selectively ignores rwnd during probing: Works, but is this a good idea?
[1] Michael Scharf, Sally Floyd, Pasi Sarolathi: "TCP Flow Control for Fast Startup Schemes", July 2008, draft-scharf-
tcpm-flow-control-quick-start-00.txt
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• Simulation with Linux kernel 2.6.18
– "Cubic" congestion control
– SACKs enabled

• 1 client, 1 server

• Simple client-server request

• Central buffer: 1000 packets

• Quick-Start request by server in SYN,ACK
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Performance Experiments – Initial Comparison

Shared Bottleneck Scenario (10 Mbit/s, 200 ms RTT)

• Quick-Start: Close to Slow-Start as load increased, because of admission control

• Jump-Start: Reasonable behavior

• More-Start: Effects of over-shooting observable for higher load

• Initial-Start: Setting an initial window of the order of the BDP is critical
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Setup

• Simulation with Linux kernel 2.6.18
– "Cubic" congestion control
– SACKs enabled

• 25 clients, 25 server

• Perstent TCP connections

• Client-server application model
– Response size Pareto distributed,

mean 250kB, shape factor 1.1
– Neg.-exp. distr. inter-arrival time

• Central buffer: 50 packets

• Quick-Start request by server in SYN,ACK
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Performance Experiments – Further Results

Observations

• Jump-Start is simple and behaves quite well in most experiments so far
... but, of course, it can significantly fail as well

• Naively activating Quick-Starts for all small transfers does not improve performance if
admission control is used

→ Either explicitly activated by application, or only, if a larger transfer can be expected

• If we had a rough estimate for the available bandwidth, just starting with this rate might
not be that harmful

• Benefit of rate pacing vs. just increasing cwnd?

– Rate pacing seems to be less harmful to competing traffic

– Not too much difference in case of significant overshoot

• Small total speedup in more complex scenarios (e. g., draft-irtf-tmrg-tests-00.txt)

– Most RTTs and transfer sizes are small

– Average improvement for mid-sized transfers less than 1 second

• ...

• But: Not completely backed by data so far
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Conclusions and Future Work

Conclusions

• Any fast startup is tricky, and there is no guarantee to be better than Slow-Start

• Router support (Quick-Start TCP) could help

– But: Significant deployment issues

– Even with router support an intelligent usage is needed

• End-to-end solution could use further parameters that are locally available

– Jump-Start is simple and has interesting properties
– But design space is not completely explored so far

• Ongoing implementation efforts to get fast startup schemes into the Linux kernel

• Early experiments show that speedup is indeed possible

Future Work

• Experiments, experiments, experiments

• New cross-layer interfaces, e. g., between applications and network stack?


