This work is partly funded by the
German Research Foundation
(DFG) through the Center of
Excellence (SFB) 627 "Nexus".

Quick-Start, Jump-Start,
and Other Fast Startup
Approaches

Implementation Issues and Performance

Michael Scharf

michael.scharf@ikr.uni-stuttgart.de
November 17, 2008

Universitat Stuttgart

Institute of Communication Networks
and Computer Engineering (IKR)
Prof. Dr.-Ing. Dr. h.c. mult. P. J. Kihn

Qutline

* Flow Startup Basics

e Fast Startup Mechanisms

* Implementation Issues

» Performance Experiments

* Conclusions and Future Work

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Flow Startup Basics — Introduction

The Flow Startup Challenge
Default TCP flow startup mechanism since 1988: Slow-Start

Two important functions
— Probe the network to find reasonable values for cwnd and ssthresh

— Initialize the ACK clock
Doubling cwnd on each arriving ACK is simple and effective

Slow-Start not perfect for interactive applications
... if the bandwidth-delay product is large
... for mid-sized data transfers
Question: Can we do better? Why can’t we immediately fully use a path?

— If it was a trivial problem, it would already have been solved
— Problem becomes more pressing as bandwidth-delay-products increase
— Disclaimer: This talk will not answer this question. It only explores the solution space.

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Flow Startup Basics — Some Thoughts

Design Space

/

End-to—end congestion control

(implicit notification)

/S T

Aggressive
fast startup

LN

Window Rate

Standard Enhanced
Slow-Start Slow-Start
Reno, Cubic, ... ssthresh Bandwidth
adaptation estimation
Limited SS FAST, ...

© 2008 Universitat Stuttgart e IKR

based

based

Flow startup approaches

Data
based

Jump-Start

——

Router—assisted congestion control
(explicit notification)

T

Sporadic Frequent
feedback feedback
Quick-Start XCP, RCP, ...

Jump-Start, Quick-Start, and Other Fast Startup Approaches

Flow Startup Basics — Some Thoughts

Design Space

Flow startup approaches

/ —

End-to—end congestion control Router—assisted congestion control
(implicit notification) (explicit notification)
Standard Enhanced Aggressive Sporadic Frequent
Slow-Start Slow-Start fast startup feedback feedback
Reno, Cubic, ... ssthresh Bandwidth Window Rate Data Quick-Start XCP, RCP, ...
adaptation estimation based based based
Limited SS FAST, ... Jump-Start
Scope

Further Alternatives

* Middleboxes such as WAN optimizers or transparent HTTP proxies
— Break end-to-end semantics

« Parallel usage of several/many TCP connections
— Fairness issue and risk of over-aggressiveness

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Flow Startup Basics — Some Thoughts

Potential Input Parameters
* Round-Trip Time (RTT), known from 3-way handshake

e (Cached state variables for this destination

— Intra-connection ... Slow-Start after idle
— Inter-connection ... Congestion manager

* Application communication characteristics (e. g., amount of queued data)

» Local interface capacity
— Automatically detected from network interface
— Manually configured by administrator/user

» Application requirements (bandwidth, |
response deadline, ...) crent Server

Request SYN-ACK

— Implicitly derived by heuristics inside the ACK
network stack (e. g., port 80/http)
— Explicitly signaled by app interface
(e. g., similar to NO_DELAY socket option)

» "Oracle" service that provides rough estimate of end-to-end capacity (ALTO++)

Response

HTTP/1.1 200 OK
< Content-Type: text/html

Length: ...

Explicit router feedback of currently available bandwidth on the path

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches 6

Flow Startup Basics — Some Thoughts

Fundamental Fast Startup Phases

SYN Data Further data
Sender — . . : » Time
: / }‘ }‘:
é A\VA\Y4
: / /
5 /
: /
g /
: /
Receiver | : | : | >
: SYN-ACK : First ACK Last ACK
§ A A A
Y Y Y Y
Sensing Probing Validation Continuation

e Sensing: Derive basic path characteristics

 Probing: Start to send data

e Validation: Test whether the initial choice was reasonable
e Continuation: Switch to continuous congestion control

— Several different options how to realize these phases

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Flow Startup Basics — Some Thoughts

Slow-Start is Not Only Occurring After Connection Setup...

Application

Fast startup decision

Socket | p— | Queue

P Time

CWND Validation

4
TCP %3 o X
Congestion window

P Time

» Congestion window validation (RFC 2861) reduces cwnd during application-limited
periods or after longer idle times

» Fast startup also after idle times possible
« Typically, more information about path characteristics available ... But is it still valid?
— Several further degrees of freedom whether to repeat a fast startup

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Fast Startup Mechanisms — Quick-Start

Quick-Start TCP Extension Overview

%

Specification in RFC 4782 (experimental)

Sensing: Explicit router feedback to determine Host 1 Router Router Host
the available bandwidth on the path

— Request for a data rate in a new IP option
— All routers have to approve the request Rate
— Resulting rate returned in a new TCP option Standardi

algorithm

Probing: Rate paced transfer with approved rate
Verification: Undo of cwnd increase in case of packet loss of paced packets
Continuation: Default TCP congestion control

Open questions: Adapt ssthesth after verification? Router admission control strategy?
"Ask before you shoot"

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches 9

Fast Startup Mechanisms — Jump-Start

Jump-Start Overview

* Proposed by D. Liu, M. Allman, S. Jin and L. Wang at PFLDNET 2007

— Basic idea: Play out the data queued in the socket paced over the first RTT
— Risk over-shooting, but carefully reduce window if packet loss has occurred

o Sensing: Default TCP, just estimate RTT
 Probing: Send queued data using rate pacing

— Initial data rate depends on available data, RTT, and receiver window
— Thresholds possible, i. e., send at most 64 KiB

« Verification: Modified TCP loss recovery
— Normal TCP retransmission mechanism, including cwnd halving
— Count number R of retransmitted packets
— If R=0: Continue with default TCP congestion control

— If R>0: Set cwnd = (D-R)/2 at end of loss recovery, where D is the number packets that
have been paced over the first RTT

e Continuation: Default TCP congestion control
— "Shoot before you ask"

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches 10

Fast Startup Mechanisms — Jump-Start

Open Question: Can This Work?

 Heavy-tailed flow sizes: Only few connections use a large initial rate
* The longer the path, the smaller the initial rate (if a maximum threshold is used)

1000 F T T T T T TTT | T T T T T TTT | T T T T TTT I:
N Initial window 3 MSS .
L Jump-Start with 16 KiB~ _
- Jump-Start with 64 KiB -
2 100 ~
o C]
= - ’
% - Typical WAN i
g F E
© C]
c C]
Q B i
n

S L i
E 1 E
01 | | | 11111 | | | | | | | 1 1 111

1 10 100

RTT [ms]

1000

» The existing Slow-Start may also significantly overshoot, without causing too much pain

© 2008 Universitat Stuttgart e IKR

Jump-Start, Quick-Start, and Other Fast Startup Approaches

11

Fast Startup Mechanisms — Further Alternatives

"More-Start"
* ldea: Quick-Start without explicit router support End system

Appl.
TCP
IP
Link

« Sensing: Choose an initial sending rate

— e. g. explicitly selected by application
u_int rate = 10000000; /* 10 Mbit/s */ . .
setsockopt (fd, SOL_TCP, 15, &rate, sizeof (u_int)); B Hr/' = : ?Z':'

— e. g. from congestion manager, local interface speed P Internet —>4

Link Link

— e. g. "oracle" service for remote peers (ALTO++) End system

End system
* Probing, validation, continuation: Similar to
Jump-Start

— "Ask someone before you shoot"

"Initial-Start"
e Just increase the initial value of cwnd to a value larger than RFC 3390
* No change in TCP error recovery mechanisms

 Initial cwnd could be statically set, or dynamically be obtained like in the previous
approaches

— "Keep it simple”

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches 12

Implementation Issues — Quick-Start

Implementation of University of Stuttgart
e Quick-Start TCP and IP functions in Linux 2.6.24 kernel
* Quick-Start IP functions in an IXP 2400 network processor

Lessons Learned
* Quick-Start processing feasible at high link speeds
e Limited implementation complexity

» A couple of challenges
— Setting of IP options from TCP layer
« TCP MSS must be reduced to leave space for IP option
» Interactions with TCP segmentation offload (TSO)
— Multiple parallel requests, SYN cookies
— Automatic determination of link capacity

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

13

Implementation Issues — Jump-Start

Implementation of University of Stuttgart
* New Jump-Start implementation in Linux 2.6.24 kernel
« Work in progress, not completely validated so far

Lessons Learned

* Of course, Jump-Start is doable —
* Needs a state engine and timers for rate-pacing >
 How to determine the queued data in socket? Rt

— Easy: sk->sk_write_qgueue.glen e p—

— However, socket processing workflow must be adapted N
« Modified TCP error recovery "ot pus tag =1

— Easy: Additional counter for retransmissions - Slis i

— However: cwnd=max (1, (D-R)/2) Fur'herdata? Ves
* Problem with flow control, similar to Quick-Start No

Send pending frames

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches

Implementation Issues — Complexity Comparison

Quick-Start in Linux Kernel

H User space

i | Application Config

5) |
n TCP

\ =

Socket interface
Sysctl config
Fast/slow path State :
LY '
1
Analysis Cong. Handle SYN :
control 1
ey !
T '‘Additional code 1
| T
1

ip_build_and_
send_packet

A 4
Hipfqueueixmit

ip_push_pend
ing_frames

Typical flow of packets

IP

Sysctl config

ip_finish_output
!

Device driver

Kernel space

— ca. 2000 LOC

© 2008 Universitat Stuttgart e IKR

Jump-Start in Linux Kernel

H User space
i | Application Config
5) |

A 4 n TCP

| (Gocepsersocrons)

Handle SYN

Cong.
control

T Additional code

Sysctl config

R . ip_push_pend . . ip_build_and_
ip_local_deliver ing_frames ip_queue_xmit send_packet

IP

ip_forward Hip_forward_finish
(

Sysctl config

Typical flow of packets

Device driver

Kernel space

— ca. 600 LOC

Jump-Start, Quick-Start, and Other Fast Startup Approaches

15

Performance Experiments

Methodology

 Lab measurements
— Patched Linux 2.6.24 kernels
— Two or more PCs, directly connected by Ethernet segments, interface speed manually set
— Delay emulation by "netem"

e Simulations

— Simulation of patched Linux 2.6.18 kernel network stacks using the "Network Simulation
Cradle" (NSC) version 0.3.0 (Sam Jansen, University of Waikato)

— Different client-server application workloads
— Classical dumbbell topology with finite buffer in front of central bottleneck link

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches 16

Performance Experiments — Speedup

lllustration of Different Fast Startups (10 Mbit/s, 200 ms RTT)

10 T IIIIIII| T IIIIIII| T IIIIIII| T T T TTTT

. vical model 4 Setup
- Analytical mode - . .
-« ——« Simulation (Linux 2.6.18) i e 2 PCs with a Ethernet link
| +—-—++ Measurement (Linux 2.6.24) i » Simple C programs for client and server
w L , - * Kernel 2.6.24, Ubuntu 7.04, default config.
GE) S|0W'\Staft v — "Cubic" congestion control
= /4 |
v 7, — SACKs enabled
c 44 * Additional delay by "netem"
o 1 i R _
Q. “r Jump-Start (64 KiB i « Quick-Start request by server in SYN,ACK
o i /] Client Server
S B . N P4 2.8 GHz P4 2.8 GHz
Q [/ 2 GB RAM 2 GB RAM
5 e e \) . -)
3 i ><_><..'*.* H*M More-Start (10 Mbit/s)] st SYN.ACK
A o QS response
e £ ACK Twrom
s Quick-Start (10 Mbit/s)] —— T
Initial-Start (83 MSS) s QSreport Request
(%]
(3]
0.13 L1 |||||||4 L1 |||||||5 L1 |||||||6 L1 ||||||7 é Response
10 10 10 10 10 g :
Transfer data size [byte] 10 Mbit/s Ethernet

» As to be expected, all new schemes are faster than Slow-Start
« Somewhat different behavior

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches 17

Performance Experiments — Speedup

Speedup Compared to Slow-Start (10 Mbit/s, 200 ms RTT)

B Initial-Start (83 MSS)

Relative improvement compared to SS

Quick-Start (10 Mbit/s)

1
Analytical model
L % ——x Simulation (Linux 2.6.18) i
+—-—+ Measurement (Linux 2.6.24)
| IIIIIII| | IIIIIII| | IIIIIII| | 1111111
0
10° 10* 10° 10° 10

Transfer data size [byte]

7

Setup

2 PCs with a Ethernet link
Simple C programs for client and server

Kernel 2.6.24, Ubuntu 7.04, default config.
— "Cubic" congestion control
— SACKs enabled

Additional delay by "netem"
Quick-Start request by server in SYN,ACK

Client Server
P4 2.8 GHz P4 2.8 GHz
2 GB RAM 2 GB RAM

QS request
[s

SYN,ACK

QS response

Request

Response

Server responseg time

10 Mbit/s Ethernet

» Significant benefit for mid-sized transfers from 10KB to 1 MB

 Measurement and simulations match analytical models

© 2008 Universitat Stuttgart e IKR

Jump-Start, Quick-Start, and Other Fast Startup Approaches

18

Performance Experiments — Flow Control Issue

The Impact of Linux Buffer Autotuning (10 Mbit/s, 200 ms RTT)

6

10 T | T | T | T | T | T | | | T | T | | | | | T | T | T Setup
gy - - e Simulation with Linux kernel 2.6.18
2 |] — "Cubic" congestion control
o - - — SACKs enabled
c
s | i e lclient, 1 server
% - / 'Y / - * Simple client-server request
8_ .I-r!.'f.l.l.l.l.l.l.l.l._ « Central buffer: 1000 packets
V=T 717717 * Quick-Start request by server in SYN,ACK
T oL _'
Q L]
= 6 |
() L ,
s i — JS at sender h
8 2~ »— JS at sender and recv.
i = lx—x JS at sender, "no rwnd" 7
00 02040608 1 12141618 2 2224 2628 3
Time since SYN segment [s]

« Case 1: Sender modification only: Slow-Start is enforced by flow-control
» Case 2: Receiver that announces large window'': Fast startup is possible
» Case 3: Sender selectively ignores rwnd during probing: Works, but is this a good idea?

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches 19

Performance Experiments — Initial Comparison

Shared Bottleneck Scenario (10 Mbit/s, 200 ms RTT)

1500

1400
__ 1300
é 1200
© 1100
1000
900
800

600
500
400
300
200
100

0

Mean server response tim

© 2008 Universitat Stuttgart e IKR

700 f

»——— Simulation (Linux 2.6.18)

SIow-S\tart

Quick-Start (10 Mbit/s) Ea
\

T Jump-Start (64 KiB)

Initial-Start (83 MSS)

<
o
=
®
9]
—
Q
—
—~
[
o
<
=
=
2
~
I|I|I|I|I

0

=

01 02 03 04 05 06 07 08 09
Average downlink load

Setup

Simulation with Linux kernel 2.6.18
— "Cubic" congestion control

— SACKs enabled

25 clients, 25 server

Perstent TCP connections
Client-server application model

— Response size Pareto distributed,
mean 250kB, shape factor 1.1

— Neg.-exp. distr. inter-arrival time
Central buffer: 50 packets
Quick-Start request by server in SYN,ACK

Jump-Start: Reasonable behavior

Jump-Start, Quick-Start, and Other Fast Startup Approaches

Quick-Start: Close to Slow-Start as load increased, because of admission control

More-Start: Effects of over-shooting observable for higher load
Initial-Start: Setting an initial window of the order of the BDP is critical

20

Performance Experiments — Further Results

Observations

Jump-Start is simple and behaves quite well in most experiments so far
... but, of course, it can significantly fail as well

Naively activating Quick-Starts for all small transfers does not improve performance if
admission control is used

— Either explicitly activated by application, or only, if a larger transfer can be expected

If we had a rough estimate for the available bandwidth, just starting with this rate might
not be that harmful

Benefit of rate pacing vs. just increasing cwnd?
— Rate pacing seems to be less harmful to competing traffic
— Not too much difference in case of significant overshoot

Small total speedup in more complex scenarios (e. g., draft-irtf-tmrg-tests-00.txt)

— Most RTTs and transfer sizes are small
— Average improvement for mid-sized transfers less than 1 second

But: Not completely backed by data so far

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches 21

Conclusions and Future Work

Conclusions
* Any fast startup is tricky, and there is no guarantee to be better than Slow-Start

* Router support (Quick-Start TCP) could help
— But: Significant deployment issues
— Even with router support an intelligent usage is needed

* End-to-end solution could use further parameters that are locally available

— Jump-Start is simple and has interesting properties
— But design space is not completely explored so far

* Ongoing implementation efforts to get fast startup schemes into the Linux kernel
» Early experiments show that speedup is indeed possible

Future Work
* Experiments, experiments, experiments
* New cross-layer interfaces, e. g., between applications and network stack?

© 2008 Universitat Stuttgart e IKR Jump-Start, Quick-Start, and Other Fast Startup Approaches 22

