Rethinking TCP-Friendly

Matt Mathis Pittsburgh Supercomputing Center (PSC)

ICCRG at IETF 73 17-Nov-2008

http://staff.psc.edu/mathis/unfriendly http://staff.psc.edu/mathis/papers/ICCRG73.pdf

© 2008 Pittsburgh Supercomputing Center

Outline

- Background, motivation and goals
- Problems and partial solutions
- A plan forward
- Open mic

The existing Internet "fairness" paradigm

- Routers send independent signals to all flows
- All flows have equivalent response to signals
- This response is defined by AIMD
- Modeled by $Rate = \frac{MSS}{RTT} \frac{0.7}{\sqrt{p}}$ [Mathis97]
- Defining TCP-friendly Rate Control (TFRC)

But there are "fairness" problems

- Non-responsive (UDP?) flows
- Applications that open many connections
- Flows with extremely different RTTs

 TCP matches window size (short term window fair)
- Insufficient Active Queue Management (AQM)
 RFC 2309
- Short term fair is not at all long term fair
- Defense from DOS attacks
- Many many more

ISP reaction

- Implement traffic controls at the access routers
 - Throttle aggressive users and applications
 - Protect "normal" users and applications
- Over provision core routers
- Nearly universal for home ISPs(?)

• Consider taking this to the limit.....

An alternate universe

- Routers control traffic ("allocate capacity")
 - Isolate greedy flows
 - Protect small flows from greedy flows
 - Think:
 - Fair Queuing (well not really...)
 - Approximate Fair Dropping (AFD)
 - RE-ECN
- TCP's goal is to keep the network busy
 It is ok to be greedy (up to a point)
- Cool new property: Neither router behavior nor end-system behavior has to be standardized
 - ISPs can enforce their own "fairness" model
 - Allows TCPs to overcome adverse environments

For illustration: Round Robin Fair Queuing

- Put each flow into a separate queue
 - Each has it's on drop discipline
- Schedule packets from each queue in sequence
- Strong flow isolation
 - Small flows send 0 or 1 packet on each turn
 - Greedy flows experience all the drops

- However RRFQ is not appropriate
 - Too much state per flow
 - Anti-optimal economic incentives

Flow Isolation is key

- Small flows are protected from greedy flows
 - Small means less than "fair share"
 - For whatever definition of "fair share" the ISP uses
 - Small flows don't see congestion signals sent to others
 - But may see 2nd order effects (e.g. jitter)
- This property has a useful colliery:
 - If the ISP can guarantee the threshold for small
 - The ISP can guarantee an SLA for small as well
 - Think of the instrumentation opportunities...

Seems extreme, however we are mostly there

- Most(?) ISPs already control their customers
 Quite likely much more than half of all Internet users
- Many users dabble in unfriendly services
 - Has the "performance escalation" war started?
 - Other communities have abandoned us: LHC, eVLBI
- Our choice is really between:
 - Insist that TCP-friendly fairness is good enough
 - Pretend that we are in control
 - Embrace the changes
 - Take a real leadership position

A small survey

- Assume: home LAN connected to ISP
 - Is your ISP managing or shaping your traffic?
 - Does your ISP protect you from greedy neighbors?
 - Are you protected from other greedy users at home?
 - Is your network "standard"?
- Similar questions for the office
 - Is somebody managing or shaping your traffic?
 - Are you protected from greedy neighbors
 - Outside the enterprise?
 - Within the enterprise?

The transition problem

- Need to upgraded the infrastructure as we "ease into" more aggressive transport protocols
- Must progressively choreograph:
 - Addressing some open research questions (next section)
 - Encouraging network upgrades
 - Allowing more aggressive transport protocols

• The really really tough problem is expressing this in standards track documents

Difficulties and partial solutions

- At this time, MOSTLY just inventory problems
- Rat hole discovery, not exploration
 - We will stop without going too deep

Too many flows in the Internet core

- Can't keep per flow state
- Use traffic control at or near access links
 - Limit the load in the core
- Core is already over provisioned
 - Can do in steady state since edge costs dominate(?)
- Suspect that "Tiny Queue" result implies:
 - Flows don't significantly interact in the core
 - Flow isolation and fairness are not issues
- What about during a crisis?
 - Is it good enough to bound the unfairness?
 - Can we? Is it already?
 - Does RE-ECN help?

We need a new definition for "Internet safe"

- "TCP-friendly" was in part a workaround for a more abstract "Internet safe" test
- How do you assure no congestion collapse?
- How do you assure "stability"?
- How do you "crisis proof" a protocol?

Enterprise networks

- Are there special deployment problems in enterprise networks?
 - LAN traffic competing with wide area traffic
 - Less history with fairness or capacity allocation issues
 - Many enterprises with old gear
 - Especially universities....
- Can use a policy workaround
 - Forbid new transport algorithms
 - Network admins will want to have protocol signatures

What flow granularity?

- Tussle between
 - Per connection
 - Per host
 - Per access port (proxy for per user)
 - Per aggregate (e.g. network or AS)
- We need to somehow support them all
 - At lest mixing them can't have pathological behaviors
- Unfortunately we will loose "short-term-windowfairness" provided by uniform AIMD
 - It helps with cascaded bottlenecks using different flow granularities
- RE-ECN might help

Loosing "short-term-window-fairness"

- Was provided by TCP-friendly
- Probably optimal choice for default fairness in uncontrolled networks
- Important when flows have multiple connections
- Important when flow granularities differ
- It might come back if we transition all the way to a new non-AIMD model for TCP-friendly
 - Yes I have an idea for an AIMD replacement
 - No, I am not going to talk about it
 - It does not play nice with AIMD
 - But introduces some new extremely useful properties
 - Planed for IETF 74

Fixing IETF documents

- 58 RFCs use "TCP friendly" or "TFRC"
 - About 8 probably contain defining language
 - About 4 are index documents
 - The rest are "just" references
 - Others may reflect the concept but w/o the words
- We will need to (eventually) inspect all of them
 - And update many

Our (TSV area's) reputation

- We have been rather closed minded
- Killed protocols that were not TCP-friendly

Our Global Village

- We have built a global village
 - No traffic control devices
 - Implicit yield signs at every intersection
 - Carefully trained users that (mostly) share nicely
- This paradigm was ideal In our infancy
 - However we have outgrown it
- With traffic control
 - Restructure protocols to be more aggressive
 - Raises efficiency
 - Higher loads
 - Less idle capacity
 - ISPs can tune capacity allocation to fit their business

My proposed (short-term) plan

- Some attitude adjustments
- Start on three documents

Attitude adjustments

- Don't sweat the small stuff
 - If a new algorithm looks AIMD friendly and
 - Nobody can find any significant unfriendly example and
 - It looks ok under crisis conditions (resource starvation)
 - Then let it in
 - we have more important things to worry about
 - We need more experience w/ algorithmic diversity anyhow
- Assume "fairness problems" belong to the net
 - When there are problems, look harder at the network
 - And less at the protocol
 - What should be responsible for capacity allocation?

New Documents

- A "vision statement"
 - Think draft architectural statement
 - But we are not the IAB
- A new test for "is it safe for the Internet?"
 - How to replace "TCP-friendliness" testing
 - Congestion collapse testing
 - Stability critera
 - Bounds on wasted transmissions and inefficiency
- Interim guidelines for testing non-AIMD-friendly
 - Start with environments needing specialized solutions

Interim guidelines for testing non-AIMD-friendly

- Limited deployment in specialized environments
 - Not loaded by default
 - requires expertise and/or action to install
 - Strong warnings in the documentation
 - Off by default (requires per application action)
 - Has published (e.g. packet trace) signatures
 - So net-admins can Identify it
 - DSCP set to "Scavenger" by default

Open discussion

- I am most interested in problem discovery
 What have I overlooked?
- Please avoid the "Fairness" rat hole
 - We need to attack that separately
 - I believe it is an orthogonal problem

