
Metadata Striping in
pNFS
IETF-73
2008-11-21

Mike Eisler
Senior Technical Director

2 © 2008 IETF Trust. All rights reserved.

What I am asking for

 Primary request
–  Add metadata striping to the NFSv4 charter

 Secondary request
–  Start with draft-eisler-nfsv4-pnfs-

metastripe-01.txt
  Is based on metadata striping work at NetApp
  Attempts to generalize to work other metadata

striping schemes

3 © 2008 IETF Trust. All rights reserved.

Why?

  Metadata matters
–  Benchmarks that people care about are mostly metadata

  e.g. SPEC SFS 2008
  e.g. IOZone is adding metadata

  E.g. applications
–  software development (build, revision control)

  incremental builds are mostly metadata accesses
–  image stores

  consumer photos
  social networking

  Yes, file system implementations can stripe metadata
without adding metadata striping to pNFS
–  Just like file system implementations can and do stripe

data without pNFS
  Then why are they all supporting pNFS?

4 © 2008 IETF Trust. All rights reserved.

The proposal at a glance
  Does not require a new minor version of NFSv4
  Requires a new layout type
  Provides three types of layouts

–  all three are returned in the same LAYOUTGET
1.  file object location

–  fh-only operations get sent to the object location
–  where attributes live

2.  file name location – directory only
–  fh/name operations get sent to the name location

–  ideally the same place where attributes live
–  links, renames can frustrate this over time

3.  directory contents location – directory only
–  Directories are sort of like regular files when you read them

–  expectation is that most LAYOUTGETs will be for directories
  Borrows from files-based layout NFSv4.1

–  indices array
–  file handles array
–  device addresses

5 © 2008 IETF Trust. All rights reserved.

Concepts

 Metadata server: MDS
–  as defined in pNFS specification

  I-MDS – the initial MDS
–  LAYOUTGETs for metadata layouts are sent to

the I-MDS
 L-MDS – the layout MDS

–  The client is directed to an L-MDS by a
metadata layout

6 © 2008 IETF Trust. All rights reserved.

Metadata layout on a directory
Given fh of “zoo”, open(“bat”)

1. LAYOUTGET (fh of A)
sent to I-MDS A

1.  fh location

2.  name/fh pattern,
algorithm F

3.  readdir pattern

A

B

C

D

E

zoo

bear cat dog rat bat bird

2. apply algorithm to
“bat”. F(“bat”)  (L-
MDS C, L-MDS fh
of A)

3. OPEN (“cat”)

7 © 2008 IETF Trust. All rights reserved.

READDIR

  Essentially treat cookies as offsets
  Layout returns a list segments

–  embedded in the metadata layout, not as elements of the
logr_layout array

–  each segment has a starting cookie
  first segment has a starting cookie of zero

  Each segment can have a different striping pattern
–  Each pattern extends up to, but not including the starting

cookie of the next segment
  Last segment extends to the maximum cookie value

  The cookies used with an L-MDS do not have to work
on an I-MDS
–  useful if the server’s file system directory format is

incompatible with striping
–  e.g. cookies might not be returned in ascending order (or any

order for that matter)

8 © 2008 IETF Trust. All rights reserved.

Layout recall: all or nothing

 Keeps it simple
 Directories are usually read from start to EOD

De-Duplication
Awareness in pNFS
IETF-73
2008-11-21

Mike Eisler
Senior Technical Director

10 © 2008 IETF Trust. All rights reserved.

What I am asking for

 Primary request
–  Add de-duplication awareness striping to the

NFSv4 charter
  virtualization is the justification

 Secondary request
–  Start with draft-eisler-nfsv4-pnfs-dedupe-00.txt

  Seems to fit with known de-duplication schemes
  Has been normalized to work other metadata

striping schemes

11 © 2008 IETF Trust. All rights reserved.

Why?

 Magnetic disk is cheap
 And yet customers are driving storage vendors

toward eliminating redundancy
–  first it was whole files
–  now it is blocks within files

 NFS clients caches data from storage arrays in
DRAM and flash
–  DRAM and flash are expensive

 Ergo, de-duplication in NFS clients matters
 The hypervisors are doing it already

–  So storage arrays should give hypervisors the
de-duplication maps

12 © 2008 IETF Trust. All rights reserved.

The proposal at a glance

  Does not require a new minor version of NFSv4
  Requires new layout types
  Use bit maps to indicate if a range of data in a file is

a duplicate from another file
  Supports hierarchical (e.g., clones, snapshots), in-

line, and background de-duplication
  Supports cross-storage-node de-duplication

–  Can integrate with existing files, objects, and blocks
layouts

  Limited to regular files
  De-duplication awareness of directories is reasonable,

–  but perhaps best captured in a separate document

13 © 2008 IETF Trust. All rights reserved.

Concepts

  Source file:
–  the file that contains the de-duplicated data.

  Target file:
–  the file the client has opened.

  Block:
–  the smallest unit of de-duplication that the server is

willing to support.
  Slab:

–  a byte range that refers to lists of smaller slabs or blocks
  Regular file:

–  An object of file type NF4REG or NF4NAMEDATTR
  Indirect layouts contain slabs

–  Refer to indirect layouts or leaf layouts
  Leaf layouts contain blocks

–  Leaf layouts indicate the source files

14 © 2008 IETF Trust. All rights reserved.

De-duplication Layout Trees

slab
size: 128

MB

next level
layout
type 1 0

first off: 0

last off:
16GB

…1 1 1 1 100000

slab 5:
offset 640

MB

slab
size: 1

MB

next level
layout
type 0 0

first off: 640
MB

last off: 768
MB

…1 0 0 0 110011

Indirect Layouts

slab 4: offset
643 MB

block
size:

8192 B

block
map

control
info

first off: 643
MB

last off: 644
MB

…

Le
af

 L
ay

ou
t

Block Map

15 © 2008 IETF Trust. All rights reserved.

Leaf Layout
Hierarchical De-duplication (snapshot, clone)

block
size:

8192 B

block map
control info

first off: 643
MB

last off: 644
MB

…1 0 1 1 11 0 0 11 1 1

block 124:
target offset
675250176

 ddll_fhlist[0] – source file

 ddl_change_attr[0]

  If absent: server will recall leaf layout before changing active
blocks of source file.

  If present: client must compare ddl_change_attr[0] with change
attribute of source file before using block from source.

 source offset: also 675250176

16 © 2008 IETF Trust. All rights reserved.

Leaf Layout
Non-Hierarchical De-duplication (inline,
background)

block
size:

8192 B

block map
control info

first off: 643
MB

last off: 644
MB

…1, 2,
67

block 1:
target offset
674242560

1, 1,
100

0, 0,
0

1, 1,
5001

 ddll_fhlist[] – source files – { 0x12, 0x67, 0x43 }

 source fh of block 1: 0x67

 source offset of block 1: 100 * 8192 = 819200

17 © 2008 IETF Trust. All rights reserved.

Leaf Layout
Cross-Node De-duplication

block
size:

8192 B

block map
control info

first off: 643
MB

last off: 644
MB

…1, 2,
2, 67

block 1:
target offset
674242560

1, 1,
2,

100

0, 0,
0

1, 1,
0,

5001

 ddll_devlist[] – device IDs – { 0x333, 0x111, 0x222 }

 ddll_fhlist[] – source files – { 0x12, 0x67, 0x43 }

 source file’s device: ID 0x111

  can map to network address of another MDS

  can map to a non-de-dupe layout type
 source fh of block 1: 0x43
 source offset of block 1: 100 * 8192 = 819200

