

Shared Connection for TURN TCP

draft-petithuguenin-turn-tcp-variant-01

Marc Petit-Huguenin
03/25/2009

TURN UDP Allocation

● Data exchanged with peers on an UDP
allocation are multiplexed over one TCP or
UDP connection between the client and the
server.

Client Server Peer A PeerB
	<-AAA---	
	<-BBB------------	
<-AAA---BBB------		

TURN TCP Allocation

● Data exchanged with peers on a TCP allocation
use multiple TCP connections between the
client and the server.

 Client
Port A Port B Server Peer A PeerB
		<-AAA---	
	<-AAA----		
		<-BBB------------	
<-BBB------------			

Why Two Mechanisms?

● If using multiple connections between the client
and server is a such good idea for TCP
allocation, why do not do the same for UDP
allocations?
 Client
Port A Port B Server Peer A PeerB
		<-AAA---	
	<-AAA----		
		<-BBB------------	
<-BBB------------			

Let's rewrite TURN UDP!

● TURN UDP much simpler as the client source
port would identify the peer.

● Channels and Send/Data Indications can be
removed.

● No fragmentation for UDP packets already
close to the Path MTU.

● (Just kidding)

Reuse TURN UDP mechanism

● The multiplexing mechanism exists already for
UDP allocations, so let's reuse it:

Client Server Peer A PeerB
	<-AAA---	
	<-BBB------------	
<-AAA---BBB------		

Modifications for TCP Allocations (1)

● Inspired by OpenSSH multiplexing

● Two new attributes used when a peer is
connected with a TCP allocation:

– WINDOW-SIZE: initial size of he window

– MAX-SIZE: size of the buffer

● An independent window size is associated to
the peer both on the client and on the server.

Modifications for TCP Allocations (2)

● A new AdjustWindow Indication:
– XOR-PEER-ADDRESS or CHANNEL-

NUMBER: Identifies the peer connection.

– ADD-SIZE: Value to add to the current window
size.

● The current window size decreases when data
is sent.

Pros (1)

● Unified mechanism

● One TCP connection through the NAT per TCP
allocation (see iab-ip-model-evolution).

● Faster than establishing multiple connections
(same than persistent connections in HTTP 1.1
or OpenSSH multiplexing).

Pros (2)

● ICE TCP opens multiple TCP connections for
connectivity check, then close all but one – this
fits well with the multiplexing mechanism.

● Multiple TCP connections between the same
endpoints do not share congestion state.

Cons

● Head Of Line Blocking.

● Some optimizations not possible.

● Additional complexity added by the windowing
mechanism.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

